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Low-Resolution Self-Attention for Semantic
Segmentation

Yu-Huan Wu, Shi-Chen Zhang, Yun Liu, Le Zhang, Xin Zhan, Daquan Zhou,
Jiashi Feng, Ming-Ming Cheng, and Liangli Zhen

Abstract—Semantic segmentation tasks naturally require high-resolution information for pixel-wise segmentation and global context
information for class prediction. While existing vision transformers demonstrate promising performance, they often utilize high-resolution
context modeling, resulting in a computational bottleneck. In this work, we challenge conventional wisdom and introduce the Low-
Resolution Self-Attention (LRSA) mechanism to capture global context at a significantly reduced computational cost, i.e., FLOPs. Our
approach involves computing self-attention in a fixed low-resolution space, regardless of the input image’s resolution, with additional
3 × 3 depth-wise convolutions to capture fine details in the high-resolution space. We demonstrate the effectiveness of our LRSA
approach by building the LRFormer, a vision transformer with an encoder-decoder structure. Extensive experiments on the ADE20K,
COCO-Stuff, and Cityscapes datasets demonstrate that LRFormer outperforms state-of-the-art models. Code is available at https:
//github.com/yuhuan-wu/LRFormer.

Index Terms—Low-Resolution Self-Attention, Semantic Segmentation, Vision Transformer
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1 INTRODUCTION

As a fundamental computer vision problem, semantic seg-
mentation [1]–[3] aims to assign a semantic label to each
image pixel. Semantic segmentation models [4], [5] usually
rely on pretrained backbone networks [6], [7] for feature ex-
traction, which is then followed by specific designs for pixel-
wise predictions. In the last decade, the progress in feature
extraction via various backbone networks has consistently
pushed forward state-of-the-art semantic segmentation [8]–
[10]. This paper improves the feature extraction for semantic
segmentation from a distinct perspective.

It is commonly believed that semantic segmentation, as
a dense prediction task, requires high-resolution features to
ensure accuracy. In contrast, image classification typically
infers predictions from a very small feature map, such as
1/32 of the input resolution. Semantic segmentation models
with convolutional neural networks (CNNs) usually decrease
the strides of backbone networks to increase the feature
resolution [11]–[14], e.g., 1/8 of the input resolution. This
attribute is also well preserved in transformer-based semantic
segmentation, demonstrating that high-resolution is still
necessary for semantic segmentation.
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Fig. 1. Comparison of existing and our proposed paradigms for the
self-attention calculation in the vision transformer. Representatives
include (a) ViT [15], DeiT [16]; (b) Swin [17], CSwin [18]; (c) PVT [19],
SegFormer [9], P2T [20]; and (d) our LRFormer. Positional encoding
modules are not drawn in this module. More details of (d) can refer to
Fig. 3.

High-resolution features are powerful for capturing the
local details, while context information pertains to the
broader understanding of the scene. Contextual features
discern the interrelations between various scene components
[21], mitigating the ambiguity inherent in local features. Thus,
considerable research efforts [1], [22] have been devoted to
extending the receptive field of CNNs. Conversely, vision
transformers inherently facilitate the computation of global
relationships by introducing self-attention with a global
receptive field. Nonetheless, this comes at a significant
computational cost, as vanilla attention mechanisms exhibit
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quadratic complexity to input length. Intriguingly, seminal
studies [9], [20], [23] made a remarkable effort by judiciously
downsampling some of the features (i.e., key and value) dur-
ing the self-attention computation for reduced computational
complexities.

Nevertheless, we observe that the computational over-
head of self-attention remains a non-negligible bottleneck for
existing vision transformers, as evidenced by Tab. 12. Con-
sequently, we aim to delve deeper into the downsampling
in the core component of the transformer, i.e., self-attention.
Diverging from prior works that only downsample the key
and value features [9], [20], [23], we propose to downsample
all constituents—query, key, and value features. In this way,
the output of self-attention would be in a low-resolution so
that the mainstream of the transformer would contain low-
resolution. Furthermore, we adopt a fixed downsampling
size rather than a downsampling ratio to attain a very low
computational complexity for self-attention. The proposed
method is called Low-Resolution Self-Attention (LRSA).

Fig. 1 depicts the differences between existing self-
attention approaches and our LRSA. Vanilla self-attention
[15] (Fig. 1(a)) directly computes the global feature relations
in the original resolution, which is quite expensive. Window-
based methods [17], [18], [24], [25] (Fig. 1(b)) divide the
features into small windows and perform local self-attention
within each window. Downsampling-based methods [9], [19],
[20], [26] (Fig. 1(c)) keep the size of the query unchanged,
and they downsample the key and value features with a
fixed pooling ratio. The lengths of key and value features
increase linearly with the input resolution. In contrast, our
LRSA (Fig. 1(d)) downsamples all query, key, and value to a
small fixed size, leading to very low complexity regardless
of the input resolution. More analysis of the computational
complexity can refer to §3.1.

While LRSA significantly boosts efficiency in capturing
global context, we recognize that maintaining fine-grained
details is another critical aspect for optimal performance in
semantic segmentation. To address this duality, we employ
LRSA to capture global context information in a purely
low-resolution domain, while simultaneously integrating
small kernel (3×3) depth-wise convolution to capture local
details in the high-resolution space. Based on these foun-
dational principles, we build a new backbone network for
feature extraction and a simple decoder to aggregate the
extracted multi-level features for semantic segmentation.
This new model is dubbed as Low-Resolution Transformer
(LRFormer). We evaluate LRFormer on popular benchmarks,
including ADE20K [27], COCO-Stuff [28], and Cityscapes
[29]. Experimental results (e.g., Fig. 2) demonstrate the
superiority of LRFormer series over state-of-the-art models.

2 RELATED WORK

2.1 Semantic Segmentation
Semantic segmentation is a fundamental task in computer
vision. It is challenging due to the numerous variations like
object sizes, textures, and lighting conditions in practical sce-
narios. FCN [30], the pioneering work in this area, proposed
the adaptation of CNNs for semantic segmentation in an
end-to-end manner. Since then, numerous studies have been
built upon FCN [30], with major efforts focused on enriching

Fig. 2. Experimental comparisons on ADE20K [27] dataset. Methods
marked with “†” are the results pretrained on the ImageNet-22K dataset.
Data are from Tab. 3 and Tab. 13.

multi-scale representations [4], [5], [31], enhancing boundary
perception [32]–[35], contextual representations [21], [36] and
introducing visual attention [2], [3], [8], [11], [14]. These stud-
ies deeply explored the semantic head design upon FCN [30]
and achieved great progress. Among these, many approaches
[1]–[5], [8], [11]–[14], [37]–[39] are greatly benefited from the
high-resolution features, performing prediction in the 1/8
of the input resolution to ensure high accuracy. Moreover,
there exist some query-based frameworks [40]–[42], [42]–[45]
that changed the decoder style in semantic segmentation. For
example, Panoptic SegFormer [40] introduced a unified mask
prediction workflow using a query decoupling strategy to
handle thing and stuff categories separately. MaskFormer
[41] revolutionized mask decoders with transformer-based
mask classification. Mask2Former [42] significantly enhanced
MaskFormer via multi-scale masked attention. K-Net [43]
unifies various segmentation tasks through dynamic kernels.
K-means Transformer [44] integrated K-means clustering to
optimize the mask generation for better instance

More recently, many works [9], [10], [41], [42], [46]
showed that vision transformers [15] can largely improve
the performance of semantic segmentation. This is mainly
attributed to the strong global capability of vision trans-
formers, which happens to be a crucial property required
for semantic segmentation. For example, SETR [46] first
adapted ViT as an encoder followed by multi-level feature
aggregation. SegFormer [9] introduced a novel pyramid
vision transformer encoder with an MLP mask decoder.
FeedFormer [47] introduced a transformer-based decoder
with features as queries, significantly enhancing the structure
information. More discussions on vision transformers can
refer to §2.3.
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Recently, there exist some universal or foundational
vision models exploring large scale capabilities, such as EVA
[48], OneFormer [49], and One-Peace [50]. They also achieved
a great success in semantic segmentation due to their superior
capability, some of which are even very capable to process
multi-modal input. For clarity, we are not able to compare
our LRFormer with these large vision models due to limited
GPU resources currently.

2.2 Convolutional Neural Networks

Given that CNN-based semantic segmentation models rely
on CNN backbones for feature extraction, we discuss some
notable CNN architectures. Since the emergence of AlexNet
[51], many techniques have been developed to strengthen the
CNN representations and achieved great success. For exam-
ple, VGG [52], GoogleNet [53], ResNets [6] and DenseNets
[54] developed increasingly deep CNNs to learn more
powerful representations. ResNeXts [7], Res2Nets [55], and
ResNeSts [56] explored the cardinal design in ResNets [6].
SENet [57] and SKNet [58] introduced different attention
architectures for selective feature learning. Very recently,
CNNs with large kernels are proven powerful in some works
[59]–[61]. To ensure the high-resolution of feature maps
for accurate semantic segmentation, semantic segmentation
models usually decrease the strides of these CNNs and uses
the dilated convolutions [22] to keep larger receptive field.
Motivated by this, HRNet [62] was proposed to directly
learn high-resolution CNN features. Despite the numerous
successful stories, CNNs are limited in capturing global and
long-range relationships, which are of vital importance for
semantic segmentation.

2.3 Vision Transformers

Transformers are initially proposed in natural language
processing (NLP) [63]. Through multi-head self-attention
(MHSA), transformers are capable of modeling global rela-
tionships. Thanks to this characteristic, transformers may
also be powerful for computer vision tasks that require
global information for a whole understanding of the visual
scenarios. To bridge this gap, ViT [15] transformed an
image to tokens via a 16×16 pooling operation and adopts
the transformer to process these tokens, achieving better
performance than CNNs in image recognition. After that,
vision transformers are developed rapidly by leveraging
knowledge distillation [64], overlapping patch embedding
[65] or convolutions [66], [67]. Recently, pyramid vision
transformers [10], [17], [19], [20], [23], [26], [68], [69] are
proven to be powerful for image recognition tasks like
semantic segmentation. For example, PVT [19] and MViT
[26] proposed to build a pyramid vision transformer pipeline
via performing downsampling on key and value features.
Notably, MViT [26] decreases the resolution of the query
by half in the first block of each stage, without the need
of patch embedding between each stage. Liu et al. [17]
created a window-based vision transformer with shifted
windows. Yuan et al. [10] presented HRFormer to learn high-
resolution features for dense prediction using the vision
transformer. Xia et al. [70] proposed DAT with deformable
attention, conducting deformable sampling on key and value

TABLE 1
Comparison of various self-attention schemes. N is the length of the

flattened features and C is the number of feature channels. “Spatial
Corr.” denotes the spatial correlation. We omit constant factors for
simplicity, like the window size in window-based methods and the

downsampled size of LRSA.

Scheme Global Spatial Corr. Complexity
Window-based [17] ✘ ✔ O(NC2)
Factorized [73] ✔ ✘ O(NC2)
Downsampling-based [9] ✔ ✔ O(N2C +NC2)
LRSA (Ours) ✔ ✔ O(NC + C2)

features. Wu et al. [20] introduced an efficient and multi-
scale self-attention strategy via in-layer pyramid pooling.
Liu et al. [71] proposed to compute the self-attention in a
hierarchical manner. More approaches can refer to the survey
[72].

Despite their reported effectiveness, it is still commonly
believed that high-resolution features are crucial for self-
attention to effectively capture contextual information in
semantic segmentation. Window-based vision transformers
[17], [18], [24], [25] calculate self-attention within each local
windows to reduce the computational complexity so that they
can keep the high-resolution of feature maps. Downsampling-
based vision transformers [9], [19], [20], [23], [26], [71]
keep the size of the query while partially conduct the
downsampling on the key and value features with a fixed
pooling ratio. Such strategy greatly reduces the complexity
compared with vanilla attention so as to keep high-resolution
features, making themselves computationally non-negligible
especially for high-resolution inputs (Tab. 12). In contrast,
we question the necessity of keeping high-resolution for
capturing context information via self-attention. We study
this question by proposing LRFormer with LRSA. The good
performance on several public benchmarks suggest the
superiority of our LRFormer for semantic segmentation.

3 METHODOLOGY

In this section, we first introduce the Low-Resolution Self-
Attention (LRSA) mechanism in §3.1. Then, we build Low-
Resolution Transformer (LRFormer) using LRSA for semantic
segmentation in §3.2. The decoder of LRFormer is presented
in §3.3. Finally, we provide the implementation details in
§3.4.

3.1 Low-Resolution Self-Attention

Unlike existing vision transformers that aim to maintain high-
resolution feature maps during self-attention, our proposed
LRSA computes self-attention in a low-resolution space,
significantly reducing computational costs. Before delving
into our proposed LRSA, let us first revisit the vision
transformer architecture.

Revisiting self-attention in transformers. The vision
transformer [15] has been demonstrated to be very powerful
for computer vision [10], [17]–[20], [23]–[26]. It consists of
two main parts: the multi-head self-attention (MHSA) and
the feed-forward network (FFN). We continue by elaborating
on MHSA. Given the input feature Fin, the query Q, key K
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and value V are obtained with a linear transformation from
Fin. Then, we can calculate the vanilla MHSA as

Attention(Fin) = Softmax(
QKT

√
dk

)V, (1)

where dk is the number of channels of Fin. We omit the multi-
head operation for simplicity. The overall computational cost
of vanilla self-attention is O(N2C + NC2), where N and
C are the number of tokens and the number of channels
of Fin ∈ RN×C , respectively. As the number of tokens of
natural images are usually very large, the computational cost
of vanilla self-attention is very high.

Previous solutions. To alleviate the computational cost
while keeping the high-resolution of feature maps, recent
downsampling-based vision transformers [9], [19], [20], [23],
[26] change the self-attention computation to

Attention(Fin) = Softmax(
QKT

s√
dk

)Vs, (2)

in which Ks and Vs are the downsampled key K and value
V with a fixed downsampling ratio sr, respectively. The
1D ↔ 2D feature reshaping is omitted for convenience. The
length of Ks and Vs is 1/s2r of the original K and V . If
the original length of K and V is too large, the Ks and
Vs will also be long sequences, introducing considerable
computational cost in self-attention. Here, we only introduce
downsampling-based transformers because they are most
relevant to our method.

Our solution. Instead, we tackle the heavy computation of
vanilla self-attention from a new perspective: we do not keep
the high-resolution of feature maps but process the features
in a very low-resolution space (Fig. 3 (b)). Specifically, the
proposed LRSA downsamples the input feature Fin to a fixed
size m. Then, multi-head self-attention is applied:

Attention(Fin) = Softmax(
QpK

T
p√

dk
)Vp, (3)

where Qp, Kp and Vp are obtained by a linear transformation
from the downsampled Fin. Qp, Kp and Vp are with a
fixed size m, regardless of the resolution of the input Fin.
Compared with vanilla self-attention and previous solutions,
our LRSA has a much lower computational cost. LRSA
can also facilitate attention optimization due to the much
shorter token length. To fit the size of the original Fin, we
then perform a bilinear interpolation after the self-attention
calculation.

Complexity and characteristics. The computational com-
plexity of LRSA is much lower than existing self-attention
mechanisms for vision transformers. We summarize the
main characteristics and computational complexity of recent
popular self-attention mechanisms and our LRSA in Tab. 1.
Spatial correlation means that self-attention is carried out in
the spatial dimension, and some factorized transformers [73]
compute self-attention in the channel dimension for reducing
complexity. As can be observed from Tab. 1, other methods
often face trade-offs among complexity, global receptive
field, and spatial correlation. In contrast, our LRSA offers
advantages in all these aspects.

Let us continue by analyzing the computational com-
plexity of LRSA. For convenience, we do not include
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Fig. 3. Illustration of a basic block of our LRFormer. We add a
3×3 depth-wise convolution (DWConv) with a residual connection before
LRSA, which is also applied between the two linear layers of the FFN.

the 1D↔2D feature reshaping. LRSA first downsamples
the input features Fin ∈ RN×C to a fixed size m × C
with a 2D pooling operation, whose computational cost is
O(NC). Then, LRSA performs linear transformations and
self-attention on the pooled features, which costs O(mC2).
The computation of self-attention costs O(m2C). The final
upsampling operation has the same computational cost as
downsampling. Overall, the computational complexity of
LRSA is O(NC +mC2 +m2C). As m is a constant number
(e.g., 162) regardless of the value of N , we can simplify the
complexity of LRSA to O(NC +C2), which is much smaller
than existing methods.

3.2 Low-Resolution Transformer

In this part, we build the LRFormer for semantic segmen-
tation by incorporating the proposed LRSA. The overall
architecture of LRFormer is illustrated in Fig. 4, with an
encoder-decoder architecture.

Encoder-decoder. Taking a natural image as input, the
encoder first downsamples it by a factor of 1/4, following
prevailing literature in this field [17], [19], [20], [23], [26]. The
encoder consists of four stages with a pyramid structure,
each comprising multiple stacked basic blocks. In between
every two stages, we include a patch embedding operation to
reduce the feature size by half. This results in the extraction of
multi-level features F1, F2, F3, F4 with strides of 4, 8, 16, and
32, respectively. We resize F2, F3, F4 to the same size as F2

before concatenating and squeezing them to smaller channels.
The resulting features are then fed into our decoder head,
which performs further semantic reasoning and outputs the
final segmentation map via a 1 × 1 convolution layer. The
details of our decoder head are presented in §3.3.

Basic block. The basic block is illustrated in Fig. 3. Like
previous transformer blocks [17], [19], the basic block of
our LRFormer is composed of a self-attention module and
an FFN. The FFN is generally an MLP layer composed of
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Fig. 4. Pipeline of the proposed LRFormer. F2, F3 and F4 are fed into the decoder head for semantic segmentation.

two linear layers with GELU [74] activation in between.
Differently, we renovate the self-attention module with our
proposed LRSA. As LRSA is computed in a very low-
resolution space, attaining a low complexity regardless of
the input resolution. However, the low-resolution space may
lose the spatial locality of the input features. Inspired by
recent works [9], [20], [67], we further introduce depth-wise
convolution (DWConv) in both positional encoding and
FFN, assisting the feature extraction via capturing spatial
local details. That is, we insert a 3 × 3 DWConv layer
with short connection followed by our LRSA, providing
conditional positional encoding [67]. This strategy is also
applied between the two linear layers of the FFN. Therefore,
our basic block can be simply formulated as below:

F ′
in = Fin + DWConv(Fin),

Fatt = F ′
in + LRSA(LayerNorm(F ′

in)),

Fout = Fatt + FFN(LayerNorm(Fatt)),

(4)

where Fin, Fatt and Fout represent the input, output of
LRSA, and output of the basic block, respectively. Since the
complexity of DWCons is O(NC), inserting DWConvs will
still keep the overall self-attention complexity at O(NC +
C2).

Architecture setting. To fit the budgets of different com-
putational resources, we design four variants of LRFormer,
namely LRFormer-T/S/B/L, stacking different numbers of
basic blocks for each stage in the encoder. We summarize
the detailed settings of their encoders in Tab. 2. In terms
of ImageNet pretraining [75], the computational cost of
LRFormer-T/S/B/L is similar to ResNet-18 [6] and Swin-
T/S/B [17], respectively.

3.3 Decoder Head

In semantic segmentation, it is suboptimal to predict the
results based solely on the final output of the encoder, as
multi-level information is useful in perceiving objects with
various scales and aspect ratios [9], [76]. Thus, we design
a simple decoder for LRFormer to aggregate multi-level
features efficiently and effectively. To this end, we note that
an MLP aggregation can achieve good performance in the
state-of-the-art work SegFormer [9]. However, it does not
consider the spatial correlation between the features from
different levels. Therefore, we encapsulate our LRSA into our

decoder for feature refinement, strengthening the semantic
reasoning of LRFormer.

As mentioned above, F2, F3, F4 are resized to the same
size as F2 and then concatenated together. We apply a 1× 1
convolution on the concatenated feature to squeeze the num-
ber of channels. Then, a basic block (LRSA + FFN) is adopted
to refine the squeezed feature. As we know, the feature from
the top of the encoder, i.e., F4, could be the most semantic
meaningful. To avoid the loss of semantic information in the
aggregation of high-level (F4) and low-level (F2, F3) features,
we concatenate the refined feature with F4 to enhance the
semantics. After that, another basic block is connected for
further feature refinement. Finally, we infer the segmentation
prediction from the refined feature with a simple 1 × 1
convolution. The experiments demonstrate that our simple
decoder with LRSA can do better than previous state-of-the-
art decoder heads for semantic segmentation, as shown in
Tab. 10.

3.4 Implementation Details

In LRFormer, we apply the overlapped patch embedding,
i.e., a 3 × 3 convolution with a stride of 2, to downsample
the features by half between each stage. To strengthen multi-
scale learning of LRSA with negligible cost, we use pyramid
pooling [20] to extract multi-scale features when computing
the key and value features in LRSA. The desired fixed
downsampling size m for generating the query, key and
value is 162 for semantic segmentation. Such size is changed
to 72 for ImageNet pretraining because m = 162 is too
large for image classification. For the number of channels
in the decoder, we set it to 256/384/512/640 for LRFormer-
T/S/B/L, respectively.

4 EXPERIMENTS

4.1 Experimental Setup

Datasets. We perform experiments on three well-
established datasets. ADE20K [27] is a very challenging
scene parsing dataset that contains 150 semantic classes
with diverse foreground and background, consisting of 20K,
2K, and 3.3K images for training, validation, and testing,
respectively. COCO-Stuff [28] labels both things and stuffs
with a total of 171 fine-grained semantic labels, with 164K,
5K, 20K, and 20K images for training, validation, test-dev,
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TABLE 2
Detailed settings of the encoders for different LRFormer variants, i.e., T/S/B/L/XL. C, Ch, E, and ni denote the number of feature channels,

channels of each attention head, expansion ratio of FFN, and the number of basic blocks for the i-th stage, respectively.

Stage Output Size LRFormer-T LRFormer-S LRFormer-B LRFormer-L LRFormer-XL

1 F1 : H
4

× W
4

C = 48, E = 8

Ch = 24, n1 = 2

C = 64, E = 8

Ch = 32, n1 = 3

C = 80, E = 8

Ch = 40, n1 = 4

C = 96, E = 8

Ch = 48, n1 = 4

C = 128, E = 8

Ch = 64, n1 = 4

2 F2 : H
8

× W
8

C = 96, E = 8

Ch = 24, n2 = 2

C = 128, E = 8

Ch = 32, n2 = 3

C = 160, E = 8

Ch = 40, n2 = 4

C = 192, E = 8

Ch = 48, n2 = 6

C = 256, E = 8

Ch = 64, n1 = 8

3 F3 : H
16

× W
16

C = 240, E = 4

Ch = 24, n3 = 6

C = 320, E = 4

Ch = 32, n3 = 12

C = 400, E = 4

Ch = 40, n3 = 15

C = 480, E = 4

Ch = 48, n3 = 18

C = 640, E = 4

Ch = 64, n3 = 22

4 F4 : H
32

× W
32

C = 384, E = 4

Ch = 24, n4 = 3

C = 512, E = 4

Ch = 32, n4 = 3

C = 512, E = 4

Ch = 32, n4 = 8

C = 640, E = 4

Ch = 40, n4 = 8

C = 768, E = 4

Ch = 48, n4 = 8

and test challenge. Cityscapes [29] is a high-quality dataset
for street scene parsing that contains 3K, 0.5K, and 1.5K
driving images for training, validation, and testing. These
datasets cover a wide range of semantic categories and pose
different challenges for semantic segmentation models.

ImageNet pretraining. We adopt the popular timm pack-
age to implement our network. Following other networks,
we first pretrain the backbone encoder of LRFormer on
the ImageNet-1K dataset, which has 1.3M training and
50K validation images with 1K object categories. During
ImageNet pretraining, the decoder head of LRFormer is
omitted. To regularize the training process, we follow the
standard data augmentation techniques and optimization
strategy used in previous works [9], [17], [64]. We use
AdamW [77] as the default optimizer with a learning rate of
0.001, weight decay of 0.05, a cosine learning rate adjustment
schedule, and a batch size of 1024. No model EMA is applied.
The backbone encoder is pretrained for 300 epochs, and
we apply layer scale [78] to alleviate the overfitting of
large networks, as suggested by recent works [59], [78]. For
LRFormer-L, we follow [17], [59] additionally pretrain the
network on the full ImageNet-22K dataset for 90 epochs
and then finetune it on ImageNet-1K dataset for 30 epochs.
In the finetuning, the learning rate is set as 5e-5, and each
mini-batch has 512 images.

Training for semantic segmentation. We use mmseg-
mentation framework to train our network for semantic
segmentation. AdamW [77] is adopted as the default op-
timizer, with learning of 0.00006, weight decay of 0.01, and
poly learning rate schedule with factor 1.0. Following [9],
[17], the weight decay of LayerNorm [84] layers is set
as 0. Regarding the data augmentation, we use the same
strategy as mentioned in [9], [17]. That is we construct the
pipeline of image resizing (0.5 ∼ 2×), random horizontal
flipping, followed by a random cropping of size 512×512,
512×512, and 1024×1024 for ADE20K, COCO-Stuff, and
Cityscapes datasets, respectively. Note that for our largest
model LRFormer-L in ADE20K, the cropped size remains
640×640, consistent with recent works. The mini-batch size
is set to 16, 16, and 8 images for ADE20K, COCO-Stuff, and
Cityscapes datasets, respectively. We train our network for
160K, 80K, and 160K iterations for ADE20K, COCO-Stuff,
and Cityscapes datasets, respectively. We only use the cross-
entropy loss for training and do not employ any extra losses
like the auxiliary loss [4] and OHEM [85].

Testing for semantic segmentation. During testing, we

TABLE 3
Comparisons with recent methods on the ADE20K dataset [27]. The

results of our method are marked as bold. “†” indicates the result
pretrained on ImageNet-22K.

Method FLOPs ↓ #Params ↓ mIoU ↑
SegFormer-B1 [9] 16G 14M 42.2%
Vim-Ti [79] - 13M 41.0%
HRFormer-S [10] 109G 14M 44.0%
LRFormer-T (Ours) 17G 13M 46.7%
SegFormer-B2 [9] 62G 28M 46.5%
P2T-Small [20] 43G 28M 46.7%
MaskFormer [41] 55G 42M 46.7%
FeedFormer-B2 [47] 43G 29M 48.0%
Mask2Former [76] 74G 47M 47.7%
LRFormer-S (Ours) 40G 32M 50.0%
HRFormer-B [10] 280G 56M 48.7%
Vim-S [79] - 46M 44.9%
SegFormer-B3 [9] 96G 47M 49.4%
LRFormer-B (Ours) 75G 69M 51.0%
DPT-Hybrid [80] 308G 124M 49.0%
SegFormer-B5 [9] 183G 85M 51.0%
DAViT-B [81] 294G 121M 49.4%
FasterViT-4 [82] 323G 457M 49.1%
InternImage-B [83] 296G 128M 50.8%
MaskFormer [41] 195G 102M 51.3%
LRFormer-L (Ours) 183G 113M 52.6%
SETR-MLA† [46] - 302M 48.6%
MaskFormer† [76] 195G 102M 53.1%
CSWin-B† [18] 463G 109M 51.8%
LRFormer-L† (Ours) 183G 113M 54.2%

maintain the original aspect ratio of the input image and
resize it to a shorter size of 512 and a longer size not
exceeding 2048 for the ADE20K and COCO-Stuff datasets.
We follow the suggestion of [9] and resize the input size
of LRFormer-L for the ADE20K dataset to a shorter size of
640 and a longer size not exceeding 2560. In the Cityscapes
dataset, we apply a crop size of 1024×1024 with sliding
window testing strategy following [9].

4.2 Comparisons

ADE20K. Results are shown in Tab. 3. LRFormer is
compared with several recent transformer-based and Mamba-
based methods in different complexity levels. Results of other
methods are from their official repositories. We can observe
that our LRFormer exhibits strong superiority over other
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TABLE 4
Comparisons with recent transformer-based methods on the full
COCO-Stuff dataset [28]. Results of our method are marked as bold.

Method FLOPs ↓ #Params ↓ mIoU ↑
HRFormer-S [10] 109G 14M 37.9%
SegFormer-B1 [9] 16G 14M 40.2%
LRFormer-T (Ours) 17G 13M 43.9%
SegFormer-B2 [9] 62G 28M 44.6%
LRFormer-S (Ours) 40G 32M 46.4%
HRFormer-B [10] 280G 56M 42.4%
SegFormer-B3 [9] 79G 47M 45.5%
SegFormer-B5 [9] 112G 85M 46.7%
LRFormer-B (Ours) 75G 69M 47.2%
LRFormer-L (Ours) 122G 113M 47.9%

TABLE 5
Comparisons with recent transformer-based methods on the

Cityscapes dataset [29]. Results of our method are marked as bold.
FLOPs are calculated for an input size of 1024× 2048.

Method FLOPs ↓ #Params ↓ mIoU ↑
HRFormer-S [10] 872G 14M 80.0%
SegFormer-B1 [9] 244G 14M 78.5%
LRFormer-T (Ours) 122G 13M 80.7%
SegFormer-B2 [9] 717G 28M 81.0%
LRFormer-S (Ours) 295G 32M 81.9%
HRFormer-B [10] 2240G 56M 81.9%
SegFormer-B3 [9] 963G 47M 81.7%
SegFormer-B5 [9] 1460G 85M 82.4%
LRFormer-B (Ours) 555G 67M 83.0%
LRFormer-L (Ours) 908G 111M 83.2%

methods. In terms of the mIoU, LRFormer-T/S/B/L are
4.5%/3.5%/2.6%/1.6% better than SegFormer-B1/B2/B4/B5
[9], [17]. LRFormer-T is 2.3% better than Swin-T-based
Mask2Former [76] with near half FLOPs. With ImageNet-
22K pretraining, LRFormer is 1.1% and 2.4% better than the
strongest Swin-B-based MaskFormer [17], [41] and UperNet-
based CSwin [18], [86] with fewer FLOPs. Compared with the
representative Mamba-based Vim [79] with linear complexity,
our LRFormer is significantly better. The visualized Fig. 2
of accuracy-FLOPs shows a more intuitive view of the
comparisons.

COCO-Stuff. We elaborate the results in Tab. 4. We evalu-
ated our method on different network scales and compared
it against recent popular methods. LRFormer achieved the
highest mIoU on all network scales, outperforming the other
methods. Specifically, our LRFormer-T model achieved a
mIoU of 43.9%, which is 3.7% higher than HRFormer-S and
3.7% higher than SegFormer-B1. Similarly, our LRFormer-S
and LRFormer-B models outperformed the corresponding
SegFormer models by 1.8% and 1.7%. Our LRFormer-L model
outperforms SegFormer-B5 by 1.2%. These experimental
comparisons demonstrate the superiority of LRFormer on
the COCO-Stuff dataset.

Cityscapes. Tab. 5 presents the experimental comparisons
between LRFormer and recent popular methods on the
Cityscapes dataset. LRFormer outperforms SegFormer and
HRFormer in all cases. We can observe that due to large input
size, FLOPs of other methods are much higher than ours.

TABLE 6
Classification results on ImageNet-1K [75] dataset. Results of our

method are marked as bold. Results marked with “†” are pretrained on
ImageNet-22K dataset.

Model FLOPs ↓ #Params ↓ Size Top-1 Acc. ↑
PVTv2-B1 [23] 2.1G 13M 2242 78.7%
HAT-Net-T [71] 2.0G 13M 2242 79.8%
P2T-Tiny [20] 1.8G 12M 2242 79.8%
LRFormer-T (Ours) 1.8G 13M 2242 80.8%
Swin-T [17] 4.5G 28M 2242 81.5%
MViTv2-T [87] 4.7G 24M 2242 82.3%
Vim-S [79] - 26M 2242 81.4%
HAT-Net-S [71] 4.3G 26M 2242 82.6%
ConvNeXt-T [59] 4.5G 29M 2242 82.1%
LRFormer-S (Ours) 4.7G 30M 2242 83.5%
Swin-S [17] 8.7G 50M 2242 83.0%
ConvNeXt-S [59] 8.7G 50M 2242 83.1%
DAT-S [70] 9.0G 50M 2242 83.7%
P2T-Large [20] 9.8G 55M 2242 83.9%
LRFormer-B (Ours) 9.3G 62M 2242 84.5%
DeiT-B [16] 17.5G 86M 2242 81.8%
RegNetY-16G [88] 16.0G 84M 2242 82.9%
RepLKNet-31B [60] 15.3G 79M 2242 83.5%
SwinT-B [17] 15.4G 88M 2242 83.5%
ConvNeXt-B [59] 15.4G 89M 2242 83.8%
FocalNet-B [89] 15.4G 89M 2242 83.9%
CSwin-B [18] 15.0G 78M 2242 84.2%
DAT-B [70] 15.8G 88M 2242 84.0%
Vim-B [79] - 98M 2242 83.2%
LRFormer-L (Ours) 15.7G 101M 2242 85.0%
Swin-B† [17] 15.4G 88M 2242 85.2%
ConvNeXt-B† [59] 15.4G 89M 2242 85.8%
LRFormer-L† (Ours) 15.7G 101M 2242 86.4%
ConvNeXt-B† [59] 45.1G 89M 3842 86.8%
Swin-B† [17] 47.0G 88M 3842 86.4%
LRFormer-L† (Ours) 46.3G 101M 3842 87.2%
Swin-L† [17] 34.5G 197M 2242 86.3%
ConvNeXt-L† [59] 34.4G 198M 2242 86.6%
LRFormer-XL† (Ours) 31.6G 187M 2242 87.0%

For example, SegFormer-B2 costs 717G FLOPs while our
LRFormer-S only spends 41% FLOPs with 0.9% improvement.
More complexity analysis can refer to Tab. 12.

ImageNet. Since we pretrained our backbone encoder
on ImageNet, we also evaluate our network on ImageNet
classification only for reference. Results are shown in Tab. 6.
We divide them to five groups. The four groups are divided
by the FLOPs of approximate 2G, 4.5G, 9G, 16G, respec-
tively. The fifth and sixth groups include results pretrained
on ImageNet-22K dataset. The backbone encoder of our
LRFormer outperformed recent state-of-the-art CNN-based
methods such as ConvNeXt [59] and RepLKNet [60], and
transformer-based methods like DAT [70] and P2T [20].

4.3 Visualization analysis.
To visually illustrate the effectiveness of our method, we pick
segformer [9] as the model for intuitive comparison from
ADE20K val set and Cityscapes val set, as shown in Fig. 5
and Fig. 6 respectively. The results indicate that LRFormer
is capable of generating more precise segmentation maps,
particularly in the areas highlighted by the red boxes. We
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TABLE 7
Experiments on the fixed pooled size settings of our LRSA. The

performance is saturated when pooled size is larger than 16× 16.

Pooled Size ↓ FLOPs ↓ Training Memory ↓ mIoU ↑
4× 4 38G (-5%) 3.9GB (-7%) 46.3%
8× 8 38G (-5%) 4.0GB (-5%) 46.8%
16× 16 40G 4.2GB 48.5%
32× 32 52G (+30%) 5.3GB (+26%) 48.6%
48× 48 74G (+85%) 7.4GB (+76%) 48.7%
64× 64 108G (+170%) 10.9GB (+160%) 48.5%

Fig. 5. Qualitative Visualization on ADE20K val set. The figures
from left to right are input images, ground truth, segmentation maps
of SegFormer [9], segmentation maps of our LRFormer. Significant
improvements are indicated by red boxes on segmentation maps.

discover that LRFormer offers significant advantages in terms
of maintaining object segmentation integrity and capturing
intricate details.

4.4 Ablation Study
In the following part, we conduct several ablation studies to
analyze our LRFormer. Except for specifically mentioning, we
use the following settings. LRFormer-S is set as the baseline
and trained using 8 GPUs for both classification and semantic
segmentation. For classification, our network is trained for
100 epochs in the ImageNet-1K [75] dataset. For semantic
segmentation, our network is trained for 80K iterations in
the ADE20K [27] dataset. Other settings are kept same as the
setup in §4.1.

Fixed pooled size. We reported the results in Tab. 7 for
ADE20K semantic segmentation. For each basic block, the
pooling operation will be omitted if the feature map size is
smaller than the desired pooled size. Default fixed pooled

TABLE 8
Performance comparison between the 16×16 pooled size (original) and

smaller pooled size (4×4).

Category Metric Default Smaller Relative Change

Small mIoU 36.2% 33.7% -7.1%
mAcc 46.3% 42.3% -8.8%

Medium mIoU 48.1% 45.3% -5.7%
mAcc 59.7% 56.8% -4.9%

Large mIoU 57.2% 53.8% -6.0%
mAcc 68.3% 64.3% -5.9%

size m is 162 for semantic segmentation. Results show larger
pooled size (m ≥ 162) achieves saturated performance. The
default setting only introduces 5% training memory overhead
and FLOPs compared with the pooled size of 82 for semantic
segmentation. Further decreasing the pooled size to 42 will
not introduce significant gain on improving efficiency. When
increasing the pooled size to 322, 482, 642, we obtain a minor
improvement or even decreased performance on ADE20K
semantic segmentation. We also observe that the FLOPs and
training memory overhead are much more significant (26%
∼ 170%) when the pooled size is larger than 162. We then
conduct similar experiments on Cityscapes dataset, which
has a much larger input size (1024×1024). The mIoU results
of LRFormer-L for pooled size of 162 and 322 are both 83.2%,
showing that the default pooled size can also work well
on larger input size. While adjusting pooled size based on
input resolution could preserve more detail for small objects,
our fixed-size design works well across all object scales.
The high-resolution DWConv branch and multi-level feature
aggregation effectively maintain small object information
despite the spatial reduction. Furthermore, ideal backbone
design paradigms [6], [17], [19], [59] suggest basic blocks
maintaining consistent settings (same pooled size in our
network) across different stages. This architectural simplicity
enhances implementation efficiency and reduces the effort
of finding optimal parameters for each stage individually.
Considering the performance, FLOPs, training memory, and
ideal backbone design paradigm, we use fixed low-resolution
pooled size as the default setting.

Locality capturing. Our LRSA only computes the attention
in low-resolution space. Introducing spatial locality, 3 × 3
depth-wise convolution, to our network is beneficial for
getting fine-grained semantic maps. In Tab. 9, we analyzed
the effect of the two depth-wise convolution before LRSA and
in FFN. The number of GFLOPs for these three configurations
is very similar so it is not reported. We can observe that
the ADE20K performance of our LRFormer is improved by
0.5% and 1.4% and when adding the depth-wise convolution
before LRSA in FFN, with 5% and 24% training memory
overhead. If both depth-wise convolutions are removed, the
mIoU performance will further drop 2.4% with 0.7GB less
training memory usage, compared with the results only
without the depth-wise convolution in FFN. This indicates
that locality capturing plays a significant role in LRFormer.
Therefore, we add both of them in our LRFormer.

Performance on small objects. To investigate how pooled
size affects different-sized objects, we categorize ADE20K
semantic classes into small, medium, and large categories.
Discrete objects were classified based on their typical real-
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Fig. 6. Qualitative Visualization on Cityscapes val set. The figures from left to right are input images, ground truth, segmentation maps of
SegFormer [9], segmentation maps of our LRFormer. The significant improvements are indicated by red boxes on segmentation maps.

TABLE 9
Ablation study on the spatial locality capturing. “Memory” is the

training memory in ImageNet pretraining.

Method Memory Top-1 Acc. ↑ mIoU ↑
LRFormer-S 14.5GB 81.6% 48.5%
w/o DWConv (bef. LRSA) 13.8GB 81.4% 48.0%
w/o DWConv (FFN) 11.7GB 81.1% 47.1%
w/o DWConv (Both) 11.0GB 80.4% 44.7%

TABLE 10
Comparisons of our simple decoder and other popular decoder

heads.

Decoder Head FLOPs ↓ #Params ↓ mIoU ↑
Ours 40G 32M 49.5%
w/ OCR [21] 48G 34M 48.0%
w/ PPM [4] 82G 44M 48.4%
w/ DA [2] 94G 42M 48.9%
w/ CC [8] 84G 42M 48.6%

world dimensions, while amorphous regions (e.g., sky) were
included in the large category due to their typically extensive
spatial coverage in images. Results are shown in Tab. 8.
Using a smaller pooled size (4×4) instead of our default
setting degrades performance across all categories, with
small objects experiencing the most severe impact. This
confirms that downsampling features to a resolution that is
too small (e.g., 4×4) can lose important semantics particularly
for small objects.

Comparions of different decoder heads. Our decoder
head aims to predict the semantic maps from multi-level
feature maps effectively and efficiently with LRSA. The
validate the LRSA of our decoder head, we compare it with

several popular decode heads. These popular decoder heads
are designed for CNNs, whose output feature maps are
usually 1/8 of the original image. However, the backbone
encoder of our LRFormer can output features of the 1/32
of the original image. To make a fair comparison, we first
upsample features of the last stages and concatenate them
together. Then, we feed them to the popular decoder heads.
Other processes keep unchanged in these popular decoder
heads. Tab. 10 summarized the results on ADE20K semantic
segmentation. The backbone is pretrained for 300 epochs on
ImageNet-1K. Compared with PPM [4], DA [2], and CC [8],
our LRFormer achieves 1.1%, 0.6%, and 0.9% improvement,
respectively, with only fewer than 50% FLOPs. Compared
with OCR [21], our LRFormer obtains 1.5% performance
gain, with 83% FLOPs. Therefore, our default setting is more
efficient and effective than other popular decoder heads.

Bilinear interpolation. Although the self-attention is com-
puted in a low-resolution manner, a bilinear interpolation is
needed to fit the size as requested by the residual connection.
However, we find that using LRFormer-S with an input
size of 5122, the bilinear interpolation only has a latency of
0.1ms, constituting a negligible 0.8% of the overall network’s
latency.

Decoder head with other backbones. In this part, we
conduct an experiment on SegFormer-B2 replacing with
our decoder. We find that SegFormer-B2 with our decoder
achieves 47.3% mIoU, 0.8% better than the initial SegFormer-
B2 with less 28 GFLOPs. Thus, replacing SegFormer-B2’s
decoder with ours can introduce a significant improvement
in terms of the performance and efficiency.

Dimensions of the decoder head. To optimize the per-
formance and computational cost of the decoder head, we
employ a 1×1 convolution to reduce the dimension of
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TABLE 11
Discussions on the dimensions of the decoder. When the dimension
of the decoder is larger than 384, the performance will be saturated or

even decreased.

Dimension FLOPs ↓ #Params ↓ mIoU ↑
128 27G 30M 47.8%
256 32G 31M 49.2%
384 40G 32M 49.5%
512 50G 37M 49.6%
768 79G 46M 49.2%
1024 117G 58M 49.2%

TABLE 12
Analysis of the memory usage and FLOPs for different input size.

“Att. FLOPs” indicates the summation of MHSA and upsampling
operations. ”Memory” is the training memory for semantic segmentation.

Method Size, Batch Size Memory ↓ FLOPs ↓ Att. FLOPs ↓
LRFormer-S 512×512, 2 4.2GB 40G 0.8G
SegFormer-B2 512×512, 2 7.2GB 62G 3.4G
LRFormer-S 1024×1024, 1 5.7GB 145G 0.9G
SegFormer-B2 1024×1024, 1 18.8GB 279G 54.0G
LRFormer-S 1536×1536, 1 15.3GB 319G 1.1G
SegFormer-B2 1536×1536, 1 OOM 802G 293.6G

the concatenated multi-level features before feeding them
into the decoder. We conducted experiments with various
dimension settings and compared their results in Tab. 11. The
backbone is pretrained for 300 epochs on ImageNet-1K. The
experiments show that a dimension setting of 512 achieves
the best performance. However, setting the dimension to
384 results in only a 0.1% drop in mIoU performance, while
saving 25% FLOPs. Therefore, we set the dimension of the
decoder head to 384 in our LRFormer-S, reflecting the optimal
trade-off between performance and computational cost.

Memory and FLOPs. Our LRSA has a very low compu-
tational complexity of only O(C2 + CN). We numerically
analyze the efficiency of our LRFormer for different input
sizes, as well as the comparisons with the representative
method SegFormer [9]. The analyzed results on FLOPs,
attention FLOPs, and training memory are shown in Tab. 12.
For LRFormer, we additionally include the computational
cost of upsampling operations. Our LRFormer-S costs much
less memory and FLOPs than SegFormer-B2. Given input size
of 1024× 1024, the number of FLOPs of MHSA operations
in our LRFormer is dramatically lower than (0.9G vs. 54G)
the self-attention in SegFormer. We can also observe that
when the input size is increasingly larger, the superiority
of LRFormer will be more substantial. This is because
increasing input size will only slightly increase the FLOPs of
upsampling operations in our MHSA.

4.5 Advanced LRFormer with Query-based Decoders

Recently, there emerged some query-based frameworks
like MaskFormer series [41], [42]. Though the decoders of
them are a bit more complex than direct fusion strategy
like SegFormer, they can achieve outstanding performance
with transformers for semantic segmentation. As mentioned
before, LRFormer uses a direct fusion strategy following
previous works, showing that a simple decoding strategy
can also achieve state-of-the-art performance. In this part, we

TABLE 13
Comparisons with recent query-based frameworks on the ADE20K
dataset [27]. The results of our method are marked as bold. Methods
ended with “+” are the enhanced versions upgraded with Mask2Former’s
decoder. “†” indicates the result pretrained on ImageNet-22K and with a

larger image size 640×640.

Method FLOPs ↓ #Params ↓ mIoU ↑
Mask2Former (Swin-T [17]) 74G 47M 47.7%
Mask2Former (Swin-S [17]) 98G 69M 51.3%
P2T-T+ [20] 56G 31M 48.2%
P2T-S+ [20] 70G 43M 49.6%
P2T-B+ [20] 109G 74M 52.5%
LRFormer-T+ (Ours) 53G 31M 49.4%
LRFormer-S+ (Ours) 70G 48M 51.3%
LRFormer-B+ (Ours) 94G 80M 53.7%
MaskFormer (Swin-B [17])† 195G 102M 53.1%
Mask2Former (Swin-B [17])† 223G 107M 53.9%
Mask DINO (Swin-B [17])† 265G 110M 54.2%
SeMask (Swin-B [17])† 227G 110M 54.4%
LRFormer-L+† (Ours) 192G 119M 55.8%
MaskFormer (Swin-L [17])† 375G 212M 54.3%
Mask2Former (Swin-L [17])† 403G 215M 56.1%
Mask DINO (Swin-L [17])† 431G 223M 56.6%
SeMask (Swin-L [17])† 426G 223M 56.3%
LRFormer-XL+† (Ours) 365G 205M 58.1%

would like to explore the potential of LRFormer combined
with query-based decoders. We build a stronger version
LRFormer+, which is the LRFormer encoder paired with
the Mask2Former decoder. We make a comparison with
recent methods that applied query-based decoders, i.e.,
Mask2Former [42], Mask DINO [45], and SeMask [90]. Since
Mask DINO and SeMask only have an implementation based
on larger backbone like Swin-L, for a fair comparison, we
reimplement these two methods with Swin-B backbone using
their official code. We also build a powerful method P2T+
with the recent powerful P2T [20] upgraded with the decoder
of Mask2Former for a more comprehensive analysis.

We conduct the experiments in the ADE20K dataset,
following the same experimental setup. Results are shown
in Tab. 13. LRFormer+ demonstrated superior perfor-
mance outshining recent query-based frameworks such
as Mask2Former and Mask DINO. We can observe that
Mask DINO† is 0.2% better than Mask2Former† with ad-
ditional 42G FLOPs. SeMask† is a more efficient archi-
tecture, which surpasses Mask2Former† by 0.5% with 4G
more FLOPs. When comparing the upgraded LRFormer+
with a Mask2Former model utilizing the Swin-B backbone,
LRFormer+ achieved 1.9% higher mIoU than Mask2Former,
despite LRFormer+ having slightly more parameters but
significantly 31G lower FLOPs, indicating a more efficient ar-
chitecture. Furthermore, the implementation of Mask2Former
with the innovative P2T backbone showcased enhanced
capabilities, with the P2T-L variant reaching a mIoU of
52.5%, 1.2% better than Swin-S version of Mask2Former with
similar FLOPs. Nonetheless, LRFormer+ still outperformed
this configuration. For example, LRFormer-B+ is 1.2% further
better than the enhanced P2T-L+ version.

For a more intuitive analysis, we visualized the accuracy-
FLOPs comparisons of Tab. 3 and Tab. 13 in Fig. 2. From
the curve and the data points of this figure, LRFormer series
achieve higher accuracy with fewer FLOPs compared to all
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TABLE 14
Performance comparison of different backbones on the vision-language

model LISA [91] for referring segmentation.

Backbone gIoU (%) cIoU (%)
ViT-L [15] 36.9 41.1
Swin-L [17] 38.1 43.1
LRFormer-XL (Ours) 40.9 45.7

other models, like Mask2Former [42], Mask DINO [45], and
P2T [20].

4.6 Application to Vision-Language Models
While semantic segmentation remains fundamental in com-
puter vision, the community has also shown growing interest
in reasoning segmentation tasks. These new tasks integrate
visual perception with language understanding capabilities
[91]–[94]. These tasks, exemplified by representative works
like LISA [91], leverage large vision-language models such
as CLIP [92] and LLaVA [93] to segment objects based
on textual descriptions. To demonstrate the versatility of
our proposed LRFormer beyond semantic segmentation, we
conduct experiments on referring segmentation to verify
whether our backbone can enhance the performance of vision-
language models.

Experimental setup. For our evaluation, we use LISA [91]
with LLaVA-7B-v1 [93] as the baseline. We only replace the
vision backbone of LISA [91] with three different options:
ViT-L [15], Swin-L [17], and our LRFormer-XL, while keeping
all other components consistent. Each backbone is pretrained
on the COCO dataset [95] to ensure a fair comparison, and
we maintain the same architecture for other parts of the
vision branch. We use the official strategy [91] to train each
method and test on the ReasonSeg validation set [91] for
referring segmentation, which allows segmenting specific
objects in images based on language prompts. Following
previous works [91], [96], [97], we use gIoU and cIoU as
evaluation metrics. More details of these metrics can refer to
[91].

Results. Tab. 14 shows the performance comparison of dif-
ferent backbones. Our LRFormer-XL backbone significantly
outperforms both ViT-L [15] and Swin-L [17] across both
metrics. Specifically, LRFormer-XL achieves 40.9% gIoU and
45.7% cIoU, surpassing the ViT-L [15] backbone by 4.0%
and 4.6% in gIoU and cIoU, and the Swin-L [17] backbone
by 2.8% and 2.6%, respectively. These results validate that
our LRFormer effectively captures global context while
preserving fine-grained details necessary for reasoning tasks.
The consistent performance improvements across both con-
ventional semantic segmentation and referring segmentation
highlight the versatility and potential of our architecture for
various advanced vision-language applications.

5 CONCLUSION

In this paper, we presented a novel approach to semantic seg-
mentation via introducing the low-resolution self-attention.
LRSA computes the self-attention in a fixed low-resolution
space, regardless of the size of the input image, making the
self-attention highly efficient. Extensive experiments (e.g.,

Fig. 2) on ADE20K [27], COCO-Stuff [28] and Cityscapes [29]
datasets show that LRFormer outperforms state-of-the-art
models, suggesting that LRSA is adequate to keep global
receptive field with negligible computational cost, i.e., FLOPs.
This study provides evidence for the effectiveness of LRSA
and opens a new direction for future research.
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