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Abstract

Recent salient object detection (SOD) models predominantly rely on heavyweight backbones, incur-
ring substantial computational cost and hindering their practical application in various real-world
settings, particularly on edge devices. This paper presents GAPNet, a lightweight network built on
the granularity-aware paradigm for both image and video SOD. We assign saliency maps of different
granularities to supervise the multi-scale decoder side-outputs: coarse object locations for high-level
outputs and fine-grained object boundaries for low-level outputs. Specifically, our decoder is built
with granularity-aware connections which fuse high-level features of low granularity and low-level
features of high granularity, respectively. To support these connections, we design granular pyra-
mid convolution (GPC) and cross-scale attention (CSA) modules for efficient fusion of low-scale
and high-scale features, respectively. On top of the encoder, a self-attention module is built to learn
global information, enabling accurate object localization with negligible computational cost. Unlike
traditional U-Net-based approaches, our proposed method optimizes feature utilization and semantic
interpretation while applying appropriate supervision at each processing stage. Extensive experi-
ments show that the proposed method achieves a new state-of-the-art performance among lightweight
image and video SOD models. Code is available at https://github.com/yuhuan-wu/GAPNet.
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1 Introduction

Salient object detection (SOD) aims to detect
the most salient region of interest in images by
approximating the human visual system [1, 2].
Accurate SOD can benefit a variety of vision
tasks, including visual tracking [3, 4], semantic
segmentation [5, 6], image editing [7], medical
imaging [8], and robot navigation [9]. Early SOD
methods relied on hand-crafted low-level fea-
tures that captured object details and boundaries
but lacked high-level semantics [10], resulting in
suboptimal object localization.

Recently, the performance of SOD tasks has
been significantly improved by applying Convo-
lutional Neural Networks (CNNSs) that can learn
low-level features at the bottom layers and high-
level features at the top layers [11]. Current state-
of-the-art regular models [12-19] made several
significant successes in recent years. These mod-
els primarily utilize established network archi-
tectures [20-24], which can extract very powerful
pretrained features. However, these models incur
substantial computational overhead, hindering
deployment on energy-constrained edge devices.
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Notably, these constraints have sparked
growing interest in lightweight SOD. How-
ever, existing lightweight models, such as
EDN-Lite [18] and SAMNet [25], face chal-
lenges in achieving comparable performance to
heavyweight counterparts due to their use of
lightweight backbones like EfficientNet-BO [26]
and MobileNet-V2 [27]. These backbones often
compromise multi-level feature representation
capabilities, leading to reduced accuracy. To dif-
ferentiate our work, we redesign the decoder to
exploit the limited feature richness of lightweight
backbones more effectively. Instead of merely
contrasting with heavyweight models, we show
how our approach augments lightweight repre-
sentations to narrow the performance gap.

We illustrate popular SOD decoders in
Fig. 1(a) and Fig. 1(b). Early methods [28,
29] (Fig. 1(a)) use late fusion strategies, which
directly conduct the prediction from the (fused)
features from one or multiple stage(s). These
decoders are very efficient due to simple archi-
tectures, but come with less effective perfor-
mance. Recently, U-Net styles (Fig. 1 (b)) are
more popular in SOD and have been adopted
by many approaches [15, 17]. Through top-down
feature fusion with deep supervision, they delve
into multi-scale low-level and high-level feature
learning, which is essential to achieve high per-
formance. However, U-Net-based decoders are
not specifically tailored for lightweight mod-
els, leading to inefficiencies in leveraging multi-
level features and suboptimal performance when
deployed on limited-resource platforms.

Based on the above observations, we pro-
pose an encoder-decoder structure, as shown
in Fig. 1(c), with granularity-aware paradigm
(GAPNet) tailored to lightweight SOD. First,
we introduce Granularity-Aware Connections to
refine the low-level and high-level features sep-
arately, which are supervised by the non-center
and center ground-truths, respectively. Then, an
efficient cross-scale global guidance is incor-
porated to ensure the accurate localization of
salient objects at each fusion stage. To enable
effective low-level feature fusion at the bottom
side, a granular pyramid convolution module
with attention refinement (GPC) is constructed to
enhance global perception. For high-level feature
fusion, we build an efficient cross-scale attention
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Fig. 1 Different encoder-decoder architectures. (a) Late-
fusion decoder side-output is calculated with corresponding
encoder features only. Intermediate side-outputs are aggre-
gated to generate the final output. (b) U-Net decoder side-
output is calculated with encoder features and higher-level
decoder features or global features in a progressive top-down
manner. (c) Ours GAPNet fuses global features with low-
level and high-level encoder features to compute side-outputs
which are then fused as the final output. The high-level and
low-level side-outputs have low granularity and high granu-
larity, respectively.

block (CSA) to replace traditional CNN modules.
Since the spatial dimensions of high-level fea-
tures are very low, adopting an attention block
in our lightweight model is computationally effi-
cient. Compared to other styles, our proposed
granularity-aware connections more effectively
optimize the utilization and semantic interpreta-
tion of features at each stage, as well as employ-
ing targeted supervisions to optimize the perfor-
mance.

The key novelty and main contributions of
this paper are twofold:

* We introduce a granularity-aware paradigm
for lightweight image/video SOD that cou-
ples scale-specific connections with match-
ing supervision: high-level features learn
from coarse object cues, while low-level fea-
tures are guided by fine boundaries, yield-
ing maximal feature reuse and coherent
semantics throughout the pipeline.

* We implement the paradigm with two com-
pact fusion blocks: Granular Pyramid Con-
volution (GPC) that enriches low-level fea-
tures via multi-scale aggregation and atten-
tion, and Cross-Scale Attention (CSA) that
injects global context into high-level fea-
tures. Coupled with a lightweight global-
attention head, they narrow the accuracy
gap to heavyweight models while remain-
ing edge-friendly.
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2 Related Work

Salient object detection (SOD) is one of the most
significant tasks in computer vision, which can
benefit many popular areas like visual track-
ing [3, 4],, image editing [7], medical imaging
[30-32], and camouflaged object detection [33,
34]. In the field of SOD, early popular meth-
ods were based on hand-crafted features [35-
40]. Deep-learning methods have since domi-
nated SOD owing to their strong generalization
across diverse scenarios. The literature catego-
rizes SOD methods into regular, lightweight, and
extremely lightweight models. We also review
recent advances in encoder-decoder structures
and multi-scale fusion. At last, we introduce
recent advances of video SOD.

Regular models. Traditional SOD models rely
on complex network structures and usually
require high computing resources for deploy-
ment. The encoder-decoder structure has dom-
inated SOD models where a heavy backbone
is used to encode multi-scale features and a
decoder is then deployed to fuse these features
[16, 18, 41-48]. On top of the encoder, some recent
works [18, 49-52] adopt additional CNN mod-
ules to extract global features to further improve
the performance. In general, heavyweight mod-
els achieve high detection accuracy at the cost of
low model efficiency.

Lightweight models. Some works build
lightweight SOD models with efficient feature
fusion modules and lightweight backbones.
CSNet has only 100k parameters and is free of
pre-training on ImageNet. However, the esti-
mation accuracy is not comparable to large
models. Liu et al. [53] proposed an efficient
HVP module that emulates the primate visual
cortex for hierarchical perception learning and
builds HVPNet with 1.2M parameters. SAMNet
that encodes multi-scale features with a small
network is developed in [25]. Fang et al. [54]
presents lightweight DNTDF with EfficientNet-
BO backbone where PCSP is constructed to
enhance the propagation of high-level features
during decoding. Wu et al. [18] proposed an
extremely downsampled module on top of the
encoder to extract global features and build an
effective decoder to recover object details from
the global features. The lightweight version

EDN-Lite adopts MobileNet-V2 as the backbone
and refreshes state-of-the-art lightweight per-
formance significantly. ADMNet [55] achieved
near-heavyweight accuracy by fusing multi-
scale context via a compact perception block and
sharpening predictions with a dual-attention
decoder. Overall, lightweight models sacrifice
detection accuracy for lower requirements for
computing resources.

Recently, some studies propose extremely
lightweight SOD models, exhibit several times
fewer parameters than recent lightweight mod-
els. For example, CSNet [56] introduced a gen-
eralized OctConv block as the basic module for
cross-stage multi-scale feature fusion. In [57],
the wavelet transform fusion module (WTFM) is
built by introducing the wavelet transform the-
ory to CNNs and then used to construct the
extremely lightweight model ELWNet which has
only 76K parameters. Recently, LARNet and its
variant LARNet* are built tailored to lightweight
SOD [58]. The newly designed context gating
module (CGM) proficiently enhances the fea-
tures at all levels by transmitting global informa-
tion. Although the above methods are superior
in terms of the model size, their FLOPs and
throughput remain comparable to lightweight
methods, and their accuracy still lags signifi-
cantly behind.

Encoder-decoder structures. Many SOD mod-
els adopt the encoder-decoder structure to effec-
tively learn multi-level multi-scale features [47,
59-62]. The encoder extracts features from the
original image and the decoder integrates these
features to the full saliency map using different
manners. The architectures include late fusion
[63, 64], its variant CPD [65], U-Net [18, 25] and
its variants DNA [66] and CTD [50, 52]. The basic
late fusion and U-Net architectures are illustrated
in Fig. 1(a) and Fig. 1(b), respectively. The for-
mer method generates the final output with late
fusion and is more efficient due to its simple
structure. The latter method fuses features in a
top-down manner and is more effective. How-
ever, the semantics could be easily affected by
low-level features through progressive top-down
feature fusion. To take advantage of intermediate
decoder features, a deep supervision mechanism
[67] has been applied to improve the perfor-
mance of SOD. Existing works [18, 25, 63, 64,
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Fig.2 Structure of the proposed network. GT: ground truth. The first layer of backbone is not shown in this figure. GPC is used
for fusion of low-scale features and CSA is used for fusion of high-level features. Low-scale side-output D; is supervised by
boundary/others saliency of high granularity while high-scale side-output D3 is supervised by center saliency of low granularity.

Final output D3 is supervised by the full saliency map.

66] utilize the full saliency map to supervise
side-outputs of different scales, introducing a
significant performance improvement. However,
smaller features must be heavily upsampled,
making uniform supervision suboptimal.
Although LDF [68] contributed a label decou-
pling framework by decomposing saliency labels
into body and detail maps, this framework
relies on iterative feature interactions and mul-
tiple training stages to refine predictions for
heavyweight models. Instead of iterative refine-
ment, we introduce a granularity-aware super-
vision mechanism tailored to lightweight mod-
els within a single training stage. By directly
assigning boundary-level guidance to low-level
features and coarse object-level guidance to high-
level features, our approach aligns supervision
granularity with each decoder stage without
relying on iterative feature interaction.
Moreover, most methods employ U-Net-
based decoders [18, 68-71], which are not ini-
tially tailored for lightweight models. This leads
to inefficiencies in leveraging multi-level fea-
tures and suboptimal performance on resource-
limited platforms. Instead, we propose a sim-
pler and more direct decoder with granularity-
aware connections that does not rely on com-
plex iterations. This design establishes a new
lightweight-centric paradigm by matching each
feature scale with appropriate supervisory sig-
nals. Our GPC and CSA modules, carefully
devised for multi-scale feature fusion under

lightweight constraints, help achieve balanced,
effective, and resource-friendly SOD modeling
on resource-limited devices.

SOD in the video domain. In contrast to
image-based SOD, video SOD generally incor-
porates the modeling of spatiotemporal features
to capture both spatial appearance and tempo-
ral consistency across frames [72-79]. For exam-
ple, TENet [80] employed the GT, the learn-
able prediction, and their weighted sum as
an attention map. The weights gradually shift
toward emphasizing the prediction as training
progresses, thereby increasing the segmentation
difficulty and improving spatial feature learning.
FSNet [75] introduced a cross-attention which is
computed between motion features and appear-
ance features, enabling effective feature fusion
that is subsequently used for salient object pre-
diction. DCFNet [81] proposed to leverage the
two adjacent frames of the current frame as tem-
poral attention to guide information propaga-
tion. By employing matrix multiplication, it dif-
fuses contextual cues throughout the entire spa-
tial domain, achieving a dynamic filtering strat-
egy with an effectively enlarged receptive field.
MMN [82] applied two neighboring frames of the
current frame as the memory to guide the extrac-
tion of high-level semantic features. This facil-
itates the integration of temporal information
across frames, thereby enhancing the model’s
ability to accurately identify salient object char-
acteristics. Liu ef al. [83] proposed using optical
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flow to guide the sampling window positions
within input video clips, enabling more effec-
tive modeling of the spatial-temporal features of
the same object. Li ef al. [84] grouped keyframes
based on background similarity and employed
different models to learn each group. Each model
focused on a specific type of background, thereby
reducing the difficulty of modeling videos with
frequent viewpoint changes. Despite the above
success, these works are with significant compu-
tational cost. Instead, we introduce a lightweight
solution that is several times faster than exist-
ing heavyweight models and narrows the gap
between lightweight and heavyweight models in
video SOD.

3 Methodology

In this section, we first provide the details of
our network structure in Sec. 3.1. Then, we
present our granularity-aware connections for
multi-scale feature fusion in Sec. 3.2. Last, we
introduce the granularity-aware deep supervi-
sion in Sec. 3.3.

3.1 Network Structure

Fig. 2 presents the overall pipeline, which com-
prises an encoder (Sec. 3.1.1), a global-feature
extractor (Sec. 3.1.2), and a decoder (Sec. 3.1.1).

3.1.1 Backbone encoder

Due to computational constraints, we employ
the well-known MobileNet-V2 [27] as the back-
bone. Following previous studies [18, 85], we
remove the final pooling and fully connected lay-
ers to obtain a fully convolutional network suited
to dense prediction. The MobileNet-V2 encoder
consists of five stages, with strides of 2, 4, 8, 16,
and 32, respectively. The last four stages, denoted
as Ey, By, E3, and Ey, are utilized for decoding
in our work. These encoder features correspond
to scales of 1, &, &, and 55, respectively. For
simplicity, the first stage of the encoder is not
depicted in the structure. Our framework natu-
rally extends to video sequences by incorporat-
ing temporal information through a two-stream
architecture. For video inputs, we process both
RGB frames and optical flow through separate
lightweight backbones, fusing them at multiple

hierarchical levels within our granularity-aware
connections thereafter.

3.1.2 Global feature extractor

As mentioned previously, the scale of the final
encoder outputs is only 55 of the original input
image. Incorporating a global feature extractor
with vision transformers is efficient at such a
small scale. Therefore, we stack a transformer
module atop the encoder to extract global fea-
tures, which are subsequently combined with
local features for multi-scale feature fusion. In
the following sections, we will detail the global
feature extractor.
Firstly, the attention is calculated as:

Atte = E4 + Attention(LayerNorm(Ey)) (1)

where LayerNorm(-) denotes layer normaliza-
tion. Attention(-) is the self-attention defined as
below:

(Q.K,V)=XWewr w")
KT )
Vi V)

where the input features are flattened with the
spatial dimension, Linear(-) denotes one linear
transformation layer, dj is the scaling factor of
the attention.

Then, an inverted residual block (IRB) [27]
is applied as the feed-forward network (FFN) to
compute the global features G, formulated as

Attention(X) = Linear(softmax(

Gy = Atte + IRB(LayerNorm(Attg)) 3)

3.1.3 Decoder network

In our GAPNet, the hierarchical decoder incor-
porates five feature fusion modules. To maintain
the efficiency of our framework, we have devel-
oped two types of modules for feature fusion
in the decoder: granular pyramid pooling con-
volution (GPC) and cross-scale attention (CSA).
These modules are designed to fuse low-level
and high-level features, respectively. We will pro-
vide further details on these modules in Sec. 3.2.
As depicted in Fig. 2, low-level encoder features
E; and E, are decoded to Dy, and high-level
encoder features E5 and E, are decoded to Dy,
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as calculated below:

Dy, = Hp(Concat(Upsample(G(Es
Dy = Hc(Concat(G(E3), G(Ey))),

)),G(En)))

(4)
where Hp(-) and He(+) are the GPC and CSA
modules, respectively. G(-) denotes a convolu-
tion followed by batch normalization and ReL.U
activation. Upsample(-) upsamples low-scale fea-
tures to the same resolution as high-scale features
using bilinear interpolation. For the concatena-
tion of H¢(+), it is not necessary to upsample the
low-scale features because the spatial features are
flattened into a vector before the concatenation.

Then, the decoder features Dy and Dy are
fused with the global features Gy to calculate
low-level side-output D; and high-level side-
output Dy, expressed as

D, = Hp(Concat(Upsample(G¢), Dy)) 5)
Dy = He(Concat(Dy, Gy)),
Last, the final decoder output is computed by

fusing the side-outputs D, and D3, shown as

D5 = Hp(Concat(Upsample(Ds), D1)),  (6)

we employ GPC for the final fusion because
it excels at preserving fine-grained boundary
details at high spatial resolutions, which is essen-
tial for accurate final predictions. Additionally,
GPC is computationally more efficient than CSA
when processing the high-resolution concate-
nated features.

3.2 Multi-scale Feature Fusion

Successful salient object detection necessitates
simultaneous global localization [18] and multi-
scale feature learning [16]. Effectively extracting
both, while maintaining efficiency, presents a
significant challenge due to computational con-
straints. In response, we have developed two
distinct strategies: CNN-based (Sec. 3.2.1) and
transformer-based (Sec. 3.2.2) modules, designed
specifically for low-level and high-level feature
fusion, respectively. Further details of these mod-
ules are discussed below.

1 Element-wise Dot Adaptive Avg.
H AAP .
! sum product Pooling

Granular l
—4{ pyramid I I rl?jrtgl I @—»
conv.

L am. F.J

(a) Granular pyramid convolution with efficient
attention.

4

-

softmax \
| Inputs

(b) Cross-scale attention.

Fig. 3 Illustration of GPC and CSA for multi-scale feature
fusion. For cross-scale attention, @ is computed with com-
bined X and X> while K, V" are computed with X5 only.

3.2.1 Granular pyramid convolution with
efficient self-attention

We introduce an efficient GPC module for low-
scale feature fusion as shown in Fig. 3(a). It
consists of a multi-scale feature extraction branch
and an efficient global attention. For the global
attention module, we first apply adaptive aver-
age pooling to downsample the input to m x
m, thereby reducing computational overhead.
Attention is computed on the downsampled fea-
ture and then upsampled via bilinear interpo-
lation. The whole process can be elaborated as
below:

= AAP(F;,, (m x m))
Att p = Fys + Attention(LayerNorm(Fy,)) (7)
F2., = Upsample(Attp)

where AAP is a 2D adaptive average pooling
layer that pools the input feature to the size of
m x m. Attention(-) is the vanilla attention shown
in Eq. (2). Upsample(-) upsamples attention to the
same size as the input features Fj,,.
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For the CNN block, the input features Fj,
are first split into four feature maps along the
channel dimension, denoted as F;, F», F5 and
Fy. Unlike recent approaches [18, 86] that evenly
split channels we allocate ratios of 1/8,1/8,1/4,
and 1/2 so that smaller dilation rates are applied
to high-scale features. We concatenate the fea-
tures of each split followed by a 1 x1 convolution.
The above processes are elaborated as below:

C; = Convy' 5(F;), i€{1,2,3,4}

cht = Convj 1 (Concat(Cq, Cq, C3, Cy)) ®)
where Convsi ;(-) is a 3 x 3 atrous convolution
with an atrous rate of a; followed by batch nor-
malization.

Finally, we add a residual connection to
aggregate the output feature F,;, which is com-
puted as

Fout = F5, + FS + Fiy, )

3.2.2 Cross-scale attention mechanism

For high-level features, the spatial resolution is
significantly reduced compared to the original
image, which enables the deployment of atten-
tion mechanisms even with limited computa-
tional resources. Consequently, we have devel-
oped a CSA block for high-level feature fusion,
as illustrated in Fig. 3(b). Unlike traditional atten-
tion mechanisms that first concatenate input fea-
tures of different scales and then compute Q, K,
and V, our cross-level attention approach com-
putes @ using combined input features, while
K and V are derived solely from high-level fea-
tures. This approach is formulated as follows:

Q = Concat (X, Xo)W®

(K, V) = Xo(WE WY)
where X7, Xy are the flattened low-level and
high-level features, respectively. LayerNorm(-) is
performed before calculating @, K and V.

This cross-scale attention mechanism signif-
icantly reduces the computational burden. In
Eq. (4), the scales of E5 and E, are % and 55,
respectively. Consequently, the scale X, consti-
tutes only one fifth of Concat(X7, X3), reducing
the complexity of the cross-scale attention to just
1

5 of that observed in vanilla attention mecha-

nisms. Similarly to standard transformer blocks,

(10)

attention is computed as outlined in Eq. (2).
Finally, an FFN comprising two linear layers with
a residual connection is deployed to compute the
fused features.

3.2.3 Video feature fusion

For video salient object detection, our frame-
work adopts a two-stream architecture that pro-
cesses both RGB frames and optical flow infor-
mation to capture spatial-temporal dependen-
cies. The fusion of RGB and optical flow features
occurs at multiple hierarchical levels within our
granularity-aware connections.

At low-level stages (E; and E3), we employ
a simple yet effective fusion strategy that com-
bines additive and multiplicative attention mech-
anisms before applying the granular pyramid
convolution. Specifically, the optical flow fea-
tures are first passed through a sigmoid acti-
vation to generate attention weights, which are
then used to modulate the RGB features through
element-wise multiplication. The final fused fea-
tures combine both the attention-modulated RGB
features and the original features from both
modalities. This fusion mechanism allows the
optical flow to serve as an attention gate that
highlights motion-relevant regions while pre-
serving complementary information from both
streams.

At high-level stages (53 and F,), we lever-
age the same cross-scale attention (CSA) mod-
ules used in our granularity-aware connections.
The CSA mechanism naturally accommodates
the fusion of multi-modal features by treat-
ing RGB and optical flow features as different
input sequences. The CSA module computes
cross-attention between RGB and flow features,
enabling the model to capture long-range tem-
poral dependencies and motion-guided spatial
attention.

This hierarchical fusion strategy aligns with
our granularity-aware paradigm: low-level
fusion preserves fine-grained motion details
essential for accurate boundary delineation,
while high-level fusion captures coarse tempo-
ral semantics for robust object localization. The
fused features are then processed through the
same decoder structure as described in Sec. 3.1.3,
maintaining computational efficiency while
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Fig. 4 Illustration of decomposing the foreground of full
saliency map into multi-granularity regions: center, bound-
ary and others. Black and white regions represent back-
ground and foreground, respectively.

enhancing temporal consistency in video salient
object detection.

3.3 Granularity-aware Deep
Supervision

Based on various encoder-decoder structures
depicted in Fig. 1, a deep supervision mech-
anism can be employed to leverage decoder
side-outputs effectively. Existing methods such
as HED [63], U-Net [18], and variants of U-Net
like CPD [65], typically utilize the full saliency
map to supervise side-outputs at different scales.
Some recent methods employ the edge supervi-
sion [14] in the low-level features or apply label
decoupling strategy with an iterative training
strategy. In contrast, our approach, as illustrated
in Fig. 2, proposes using distinct ground truths
(center, edge, others, full) to supervise different
outputs in a single stage, enhancing the speci-
ficity and effectiveness of the training process for
lightweight SOD.

3.3.1 Decomposition of ground-truth
saliency map

According to the Euclidean distance to the near-
est background pixel, each pixel of the saliency
foreground is classified into three regions [18]:
the boundary, which is close to the background;
the center, which is far from the background;
and others, which are located in the middle of
an object. Specifically, the boundary region com-
prises pixels that are less than five pixels away
from the closest background pixel. Pixels that
rank in the top 20% in terms of distance from the
nearest background pixel constitute the center
region. Any foreground pixels that do not qual-
ify for inclusion in either the boundary or center
regions are categorized into the other region. The
aggregation of the center and other regions is

referred to as the boundary-others region. The
center region represents the abstract location of
the object, while the boundary delineates the
fine-grained edges of the object. For illustration,
an example is provided in Fig. 4.

Based on this classification, we employ low-
granularity center saliency to supervise the high-
level side-output, and high-granularity bound-
ary and others saliency to supervise the low-level
side-output. The final output is supervised using
the full saliency map.

3.3.2 Loss function

The loss function combines the binary cross-
entropy loss and Dice Loss [87], defined as

Lpee = —Glog P — (1 —G)log(1 — P)
2-G-P
G+ P
L= Lbce + Edice

‘Cdice =1- (11)

where P and G denote the predicted and ground-
truth saliency map, respectively. “-” operation is
the dot product. denotes the ¢; norm. Ly,
Lgice and L represent the binary cross-entropy
loss, dice loss and combined loss, respectively.
The Dice loss is an effective way to address
class-imbalance datasets.

There are two side-outputs and one final out-
put and the overall loss that we use for training
is computed as

3
Eoverall = Z E(P’La Gz) (12)

i=1

where G;, G2 and G3 are the ground-truth
boundary-others saliency map, center saliency
map and full saliency map, respectively. P; is
the corresponding predicted saliency map calcu-
lated from decoder side-outputs Dy, Dy and D3
in Eq. (5) and Eq. (6), shown as
P; = o(Upsample(Convy«1(D;))), € {1,2,3}
(13)
where Conviyi(-) denotes a convolutional
layer without normalization and activation.
Upsample(-) upsamples input features to the
same resolution as the full saliency map using
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bilinear interpolation. o(-) is the standard
sigmoid function.

4 Experiments
4.1 Experimental Setup

Implementation details. The proposed model
is implemented in PyTorch [89] with a single
NVIDIA RTX3090 GPU. Training is carried out
over 30 epochs using the Adam optimizer [90],
with parameters set to §; = 0.9, 2 = 0.99, a
weight decay of 107%, and a batch size of 32.
We employ a polynomial learning rate scheduler
with an initial learning rate of 1.7 x 107* and a
power of 0.9. The adaptive pooling size of the
GPC module is set to m = 7 Eq. (7). During train-
ing, the input images are resized to 320 x 320,
352 x 352, and 384 x 384 for augmentation pur-
poses. During inference, images are resized to
384 x 384. The CSA and GPC modules are highly
efficient, with just 0.065M and 0.020M parame-
ters. For video SOD, we first train our model
using static images of DUTS training set and then
finetune on the video dataset. Following previ-
ous popular works [75, 83, 91], we apply FlowNet
2.0 [92] to generate the offline optical flows.
The video SOD training hyper-parameters match
those of image SOD, except that the learning rate
is reduced by a factor of ten.

SOD Datasets. The proposed method has
been tested on five commonly-used datasets,
including three large datasets: DUTS [93], DUT-
OMRON [36], HKU-IS [94], and two smaller
datasets: ECSSD [95] and PASCAL-S [96]. These
datasets comprise 15572, 5168, 4447, 1000, and
850 natural images with corresponding pixel-
level labels, respectively. Following methodolo-
gies from prior studies [97-99], we train our
model on the DUTS training set, which contains
10553 images, and evaluate it on the DUTS test
set (DUTS-TE, 5019 images) and the other four
datasets.

Video SOD Datasets. We utilize four
commonly-used datasets DAVSOD [72], DAVIS
[100], SegTrack-V2 [101], and ViSal [102] to
construct the experiments. Following other
approaches, our model is also trained on the
training set of DAVSOD [72] and DAVIS [100],
which have 91 clips in total. Other data are for

testing. For DAVSOD, we use the easy set of 35
clips for testing.

Evaluation Criteria. @~ We employ six widely-
used metrics to evaluate all methods, which
include the maximum F-measure score (F5*),
weighted F-measure score (F") [103], mean abso-
lute error (MAE), S-measure (S,) [104], maxi-
mum E-measure (Egnax), and mean E-measure
(Eg™") [105]. Except for MAE, a higher value
indicates better performance for all metrics. F-
measure is the weighted harmonic mean of pre-
cision and recall and can be calculated as

(1 + B?) x Precision x Recall
B2 x Precision + Recall

Fg = (14)

where 2 = 0.3 to emphasize the importance
of precision, following previous studies [13, 15,
29, 85]. F§* is the maximum Fj under differ-
ent binary thresholds. Fy’ solves the problems
of F-measure that may cause three types of
flaw, i.e., interpolation, dependency, and equal-
importance [103].

MAE measures the similarity between the
predicted saliency map P and the ground-truth
saliency map G, which can be computed as

H W
1
MAE P G 7W E E ||Pi,j - Gi,j” (15)
=1 :1

where H and W denote the height and width of
the saliency map, respectively.

S-measure (S,) [104] and E-measure (FE)
[105] have been increasingly popular for SOD
evaluation recently [16, 58, 106]. S-measure cal-
culates the structural similarity between the pre-
dicted saliency map and the ground-truth map.
E-measure computes the similarity for the pre-
dicted map binarized by different thresholds
and the binary ground-truth map. Thus, they
are significant alternatives that could provide
more comprehensive SOD evaluations. In this
paper, we compute the maximum and average E-
measures (Eg"™, Eg") among all binary thresh-
olds. We use the official codes from [104, 105] to
compute the above metrics.
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Table 1 Comparison of GAPNet with state-of-the-art heavyweight and lightweight SOD methods. The best performance in
each row among lightweight models is highlighted in bold.

‘ Heavyweight models (# Param > 20 M) ‘ Lightweight models (# Param < 2 M)

Method
CPD PoolNet ITSD MINet VST CTD ICON EDN SRF PiNet{HVPNet CSNet SAMNet EDN-Lite ELWNet LARNet ADMNet+ Ours
# Reference [65] [15] [17] [1e6] [88] [50] [19] [18] [51] [46] | [53] [56] [25] [18] [57] [58] [55] -
# Param (M) 47.85 68.26 26.47 162.38 44.56 24.64 33.09 42.8591.59 27.20| 1.24 0.14 1.33 1.80 0.07 0.09 0.84 1.99
FLOPs (G) 17.74 89.06 15.95 87.02 41.3612.35 20.91 20.3721.77 - 113 057 054 1.02 0.38 0.82 3.30 1.26
Speed (FPS) 60 83 77 62 73 148 89 77 39 - 749 675 459 652 - - 115 571
Fge10.865 0.874 0.882 0.880 0.8900.896 0.891 0.8930.913 0.865| 0.837 0.804 0.833 0.856 - - 0.840 0.867
Fy 10.794 0.806 0.822 0.824 0.8270.846 0.835 0.8440.871 0.817| 0.730 0.643  0.729 0.789 - - 0.767  0.804
DUTS-TE MAE|0.043 0.040 0.041 0.038 0.0380.034 0.037 0.0350.027 0.041| 0.058 0.075 0.058 0.045 0.075  0.069 0.052  0.042
So 10.869 0.883 0.884 0.883 0.8960.892 0.888 0.8920.910 0.864| 0.849 0.822 0.849 0.862 - 0.820 0.849  0.872
EF™10.914 0923 0.930 0.927 0.9390.935 0.932 0.9340.952 0.911| 0.899 0.875 0.902 0.910 - - 0.892  0.922
Egem0.898  0.904 0.914 0.917 0.9190.929 0.923 0.9250.943 0.906 0.860 0.820  0.860 0.895 - - 0.882  0.910
FF*10.797 0.792 0.818 0.795 0.8220.818 0.821 0.8210.825 0.793| 0.796 0.761 0.795 0.783 - - 0.797  0.806
Fju 0.719 0.729 0.750 0.738 0.7550.762 0.761 0.7700.784 — 0.700 0.620 0.699 0.721 - - 0.729  0.738
DUT-OMRON MAE|0.056 0.055 0.061 0.056 0.0580.052 0.057 0.0500.043 0.055| 0.064 0.080 0.065 0.058 0.083  0.080 0.058  0.057
So |0.825 0.836 0.840 0.833 0.8500.844 0.844 0.8490.861 0.821| 0.831 0.805 0.830 0.824 - 0.797 0.826  0.833
Eg™(0.868 0.871 0.880 0.869 0.8880.881 0.884 0.8850.894 0.863| 0.876 0.853 0.877 0.860 - - 0.869  0.876
Egem|0.847 0.854 0.865 0.860 0.8710.875 0.876 0.8780.884 0.859| 0.839 0.801 0.841 0.848 - - 0.857  0.866
Fg(0.925 0.930 0.934 0.934 0.9420.940 0.939 0.9400.947 0.928| 0914 0.896 0.914 0.922 - - 0918  0.929
Fg |0.875 0.881 0.894 0.897 0.8970.909 0.902 0.9080.915 0.896| 0.840 0.777  0.837 0.877 - - 0.872  0.889
HKU-IS MAE|0.034 0.033 0.031 0.029 0.0300.027 0.029 0.027 0.024 0.030| 0.045 0.060 0.045 0.035 0.051  0.046 0.036  0.032
Sa 0.905 0.915 0.917 0.919 0.9280.921 0.920 0.9240.931 0.904| 0.899 0.881 0.898 0.906 - 0.883 0901 0.914
EF10.950 0.954 0.960 0.960 0.9680.961 0.960 0.9620.969 0.951| 0.946 0.933 0.946 0.948 - - 0.946  0.957
EFm0.938 0.939 0.947 0.952 0.9520.956 0.953 0.9550.960 0.946| 0.914 0.883 0.912 0.936 - - 0934 0.947
FF*10.939 0.943 0.947 0.946 0.9510.949 0.950 0.9500.957 0.935| 0.927 0.912 0.926 0.934 - - 0922 0.938
F§ 0.898 0.896 0.910 0.911 0.9100.915 0.918 0.9180.926 0.902| 0.854 0.806 0.858 0.890 - - 0.871  0.898
ECSSD MAE (0.037 0.039 0.035 0.034 0.0340.032 0.032 0.0330.027 0.039| 0.053 0.066 0.051 0.043 0.061  0.055 0.051  0.040
So (0918 0.921 0.925 0.925 0.9320.925 0.929 0.9270.936 0.910| 0.903 0.893 0.907 0.911 - 0.888 0.900 0.916
EF®(0.951 0.952 0.959 0.957 0.9640.956 0.960 0.9580.965 0.948| 0.940 0.931 0.944 0.944 - - 0.933  0.950
Egem|0.942 0940 0.947 0.950 0.9510.950 0.954 0.9510.957 0.944| 0911 0.886 0.916 0.933 - - 0914  0.941
Fge10.859 0.862 0.870 0.865 0.8750.877 0.876 0.8790.892 0.858| 0.838 0.826 0.836 0.852 - - 0.827  0.860
EL;” 0.794 0.793 0.812 0.809 0.8160.822 0.818 0.8270.848 0.807| 0.746 0.691 0.738 0.788 - - 0.752  0.793
PASCAL-S MAE|0.071 0.075 0.066 0.064 0.0620.061 0.064 0.0620.051 0.069| 0.090 0.104 0.092 0.073 0.102  0.096 0.088  0.073
So |0.848 0.849 0.859 0.856 0.8720.863 0.861 0.8650.881 0.837| 0.830 0.814 0.826 0.842 - 0.810 0.815 0.843
EgF®10.891 0.891 0.908 0.903 0.9180.906 0.908 0.9080.928 0.889| 0.872 0.860 0.870 0.890 - - 0.862  0.890
Ege0.882 0.880 0.895 0.896 0.9020.901 0.899 0.9020.919 0.886| 0.844 0.815 0.839 0.878 - - 0.851  0.881
F-measure vs Speed on DUTS-TE F-measure vs Speed on DUT-OMRON F-measure vs Speed on HKU-IS . CPD
PoolNet
0.91 0.945
0.90 o827 E * v z :\Iﬁ\JDet
* 0.940 <+
0.89 " VvV vsT
)  0.819 © 0.935 CcTD
£ 0% ° * € 0.80 £ * <« EDN
“ 0.6 v z ¢ . “ 0.925 ® SRF
0.85 0704 0.920 @® HVPNet
o084 ’ ¢ @ SAMNet
oo e ° 015 e & EDN-Lite
10 100 800 10 100 800 10 100 800 “ ADMNet+
Speed (FPS) Speed (FPS) Speed (FPS) Ours
(a) DUTS-TE [93] (b) DUT-OMRON [36] (c) HKU-IS [94]

Fig. 5 Speed and accuracy comparison with state-of-the-art SOD methods. Our model outperforms all the lightweight models
and some of the heavyweight models. Inference speed is plotted using logarithm with base 10.

4.2 Experimental Comparisons

Image SOD. We compare our model against
nine heavyweight models with over 10M param-
eters and six lightweight models with no more
than 10M parameters. For competing models that
offer both ResNet-50 and VGG-16 backbones, the
ResNet-50 backbone is utilized. For lightweight

models, all models are with the MobileNetV2
backbone, except that CSNet, ELWNet, and LAR-
Net designed their backbones for extremely
lightweight SOD. For a fair comparison, we use
the saliency maps provided by the official repos-
itories of the benchmarking methods and use
the same code for evaluation. To assess model
efficiency, we re-implement these models on
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the same workstation equipped with a single
NVIDIA RTX3090 GPU. The input image sizes
for the competing models adhere to the default
settings specified in their original publications.

For LARNet [58] and ELWNet [57], where no
official codes or saliency maps are available, we
directly extract data on the number of param-
eters, FLOPs, and selected performance metrics
from the published papers.

Video SOD. We compare our model against
several recent heavyweight models. For fair com-
parison, we re-implement two recent strongest
heavyweight models [82, 91] in the lightweight
setting, i.e., replacing the backbone and 3x3
convolutions with MobileNetV2 and 3x3 depth-
wise convolutions, respectively. Following pre-
vious popular works [72], we apply S-measure,
maximum F-measure, and MAE as the evalua-
tion metrics.

4.2.1 Quantitative comparison

Image SOD. A comprehensive quantitative
comparison of our model with competing meth-
ods is presented in Table 1. Our model consis-
tently outperforms or matches other lightweight
methods across the five datasets using all six
metrics. Specifically, our model surpasses the
state-of-the-art lightweight model EDN-Lite [18]
by margins of 1.1%, 2.3%, 0.7%, 0.4%, and 0.8%
in terms of F'™ across the datasets. Moreover,
using E*", our model achieves performance
improvements of 1.5%, 1.8%, 1.1%, 0.8%, and
0.3%. For S,, our model beats state-of-the-art by
1.0%, 0.9%, and 0.8% on the three large datasets,
namely DUTS-TE, DUT-OMRON, and HKU-IS.
Notably, the most significant improvements are
observed on the DUT-OMRON dataset, where
Se, Egnax, Egnea“, F é“ax, Fg, and MAE are
improved by 0.9%, 1.6%, 1.8%, 2.3%, 1.7%, and
0.1%, respectively.

In terms of model efficiency, our model pos-
sesses more parameters and is comparatively
less efficient against extremely lightweight mod-
els CSNet [56], LARNet [58], and ELWNet
[57]. However, there is a notable accuracy gap
between these models and ours. For instance,
the MAE of LARNet [58] on DUTS-TE is 0.069,
whereas our model achieves an MAE of 0.042.

P v ® VMGA
P + RCR
®
B ssav
° @ wsv
n % *
0 ¢ o * | Yy sTvs
20 2 o 4k DCFNet
8 8 N FSNet
EB R E“ <« CoSTFormer
DMPN
¢ EESTI
® MmN
JL-DCF-Light
* * MMN-Light
M o 3 T oo w00
Speed (FPS) Speed (FPS) Ours
(a) DAVIS [93] (b) SegTrack-V2 [36]

Fig. 6 Speed and accuracy comparison with state-of-the-
art video SOD methods.

Compared to lightweight models with simi-
lar parameters, including SAMNet [25], HVP-
Net [53], and EDN-Lite [18], our model exhibits
slightly higher FLOPs and reduced inference
speed. This increased computational demand is
attributed to the attention modules integrated
into our model. In summary, our model estab-
lishes new benchmarks in state-of-the-art perfor-
mance for lightweight SOD models across all test
cases, albeit at the expense of marginally higher
computational overhead and slower inference
speeds.

A comparison of the accuracy (FF*) and
inference speed across three large datasets
(e.g., DUTS-TE, DUT-OMRON, and HKU-IS) is
depicted in Fig. 5. It is evident that our model
consistently surpasses other lightweight mod-
els across all datasets with significant improve-
ments. In certain test cases, our model achieves
performance comparable to or even surpassing
some heavyweight models, which exhibit con-
siderably slower inference speeds. For example,
on the DUT-OMRON dataset, our model out-
performs heavyweight models such as CPD [65],
PoolNet [15], and MINet [16].

Video SOD. Results are shown in Table 2.
We list a comparison of popular heavyweight
and lightweight models in recent years. From
the results, we can find that our model outper-
forms the recent lightweight versions of JL-DCF
[91] and MMN [82]. Although the lightweight
JL-DCF achieves better performance than our
model on the DAVSOD dataset, it falls short
on other datasets, particularly on SegTrack-
V2. Furthermore, our GAPNet operates signifi-
cantly faster than the lightweight JL-DCF, high-
lighting its suitability for lightweight applica-
tions, especially on edge devices. Compared
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Table 2 Comparison with state-of-the-art methods on video SOD. The best performance of lightweight models is marked in

bold.

Method Param (M) FPS\ DAVIS[100] | ViSal [102] | DAVSOD[72] | SegTrack-V2[101]
| Sa  FF MAE| Sa FJ'"* MAE| So FJ“® MAE| S, Fj"" MAE

Heavyweight models

MGA [107] 87.5 14 0910 0.892 0.022]0940 0936 0.017 | 0.741 0.643 0.083 | 0.880 0.829 0.027

RCR [108] 515 27 | 0886 0.848 0.027 |0.922 0906 0.027 | 0.741 0.653 0.087 | 0.843 0.782 0.035

SSAV [72] 59.0 20 |0.893 0.861 0.028 |0.943 0939 0.020 |0.724 0.603 0.092 | 0.851 0.801 0.023

LTSD [73] - - 10897 0891 0021| - - - |0768 0689 0075|0.880 0.866 0.018

TENet [80] - - 10905 0.894 0.021]0943 0947 0.021|0.753 0.648 0078 | - - -

WSV [109] 33.0 37 |0.828 0.779 0.037|0.857 0.831 0.041 |0.705 0.605 0.103 | 0.804 0.738 0.033

STVS [74] 46.0 50 |0.892 0.865 0.023 0954 0953 0.013 |0.744 0.650 0.086|0.891 0.860 0.017

DCFNet [81] 68.5 28 | 0914 0900 0.016 |0.952 0953 0.010 | 0.741 0.660 0.074 | 0.883 0.839 0.015

FSNet [75] 97.9 28 [ 0920 0907 0.020| - 0.773 0.685 0.072

CoSTFormer [83] - 13 [ 0921 0903 0014 | - - - |0.806 0731 0061 |0.888 0.833 0.015

DMPN [79] 152.2 9 |0905 0888 0.021 |0.929 0.016 | 0.755 0.655 0.069

EESTI [74] 46.2 100 | 0.892 0.865 0.023 | 0.952 0952 0.013 | 0.746 0.651 0.086 | 0.891 0.860 0.017

Li ef al. [84] - | 0906 0.888 0.018 0.777 0716 0.072

MMN [82] 49.0 69 |0.897 0.877 0.020|0.947 0948 0.012 |0.777 0.708 0.065 | 0.886 0.850 0.014

Lightweight models

JL-DCF-Light [91] 2.1 58 |0.892 0.863 0.025]0.882 0.858 0.038 |0.728 0.630 0.088 | 0.825 0.743 0.030

MMN-Light [82] 3.1 340 | 0.861 0.822 0.025|0.884 0.864 0.035|0.700 0.593 0.089 | 0.843 0.786 0.023

Ours 3.8 349 | 0.893 0.864 0.021 | 0.886 0.867 0.033 | 0.706 0.597 0.089 | 0.862 0.804 0.021

to heavyweight models, our GAPNet demon-
strates competitive performance while offering
substantial efficiency advantages. Despite hav-
ing significantly fewer parameters than heavy-
weight counterparts, our method operates at
much higher inference speeds and achieves com-
parable or superior accuracy on most datasets
especially DAVIS and SegTrack-V2. This demon-
strates that our granularity-aware paradigm
effectively bridges the performance gap between
lightweight and heavyweight approaches, mak-
ing it highly suitable for real-time applications
and resource-constrained environments without
sacrificing detection quality.

Following the SOD part, we also illustrate the
speed-accuracy comparison as shown in Fig. 6.
Our method consistently occupies the upper-
right corner of the accuracy-speed plots on both
DAVIS and SegTrack-V2, delivering S-measure
scores that rival or surpass heavyweight com-
petitors while running an order of magnitude
faster (300 FPS). This clear dominance in the
speed—accuracy Pareto front highlights the supe-
rior efficiency of the proposed framework over

[’Iﬂn-!ﬂ
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Fig.7 Qualitative comparison with other lightweight mod-
els on image SOD.

all lightweight baselines and many heavyweight
models alike.
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Table 3 Ablation study of the output dimension of the
pooling layer in GPC.

Table 4 Effect of the split ratios of pyramid convolution
module.

#Param | FLOPs | Speed )

Method M) (G) (FPS) E?ax F[; MAE Method Split Ratios E?ax Fé“ MAE
w/o Attn. 1.96 1.25 609 0.864 | 0.801 | 0.043 Identical Split [18] [%, %, %, %] 0.863 0.801 0.043
m=1 1.99 1.26 578 0.864 | 0.800 | 0.043 Ours [5:5 3 3] 0.867 0.804 0.042
m=3 1.99 1.26 572 0.865 | 0.803 | 0.043
m=7 1.99 1.26 571 0.867 | 0.804 | 0.042

=28 1.99 1.47 408 0.865 | 0.803 | 0.042
o Table 5 Effect of the global feature extractor (GFE).

4.2.2 Qualitative comparison

A qualitative comparison is illustrated in Fig. 7.
It is apparent that our model can accurately iden-
tify salient objects with clear boundaries and
high confidence, even in complex scenarios. Par-
ticularly in images—such as the last two in
the figure—where the foreground salient object
blends with the background, competing models
often incorrectly classify nearby background ele-
ments as part of the foreground. In contrast, our
model maintains precise segmentation, demon-
strating its robustness and accuracy.

4.3 Ablation Study

To demonstrate the efficacy of various mod-
ules within our model, as well as the impact
of different deep supervision combinations, we
conducted an ablation study using the DUTS-
TE dataset. This study utilized efficiency metrics
and selected performance metrics: i and
MAE.

4.3.1 Attention module in GPC

The experimental results concerning the atten-
tion module of GPC are summarized in Table 3.
It is important to note that m represents the out-
put dimension of the adaptive pooling layer in
Eq. (7), and the attention module was evalu-
ated with four different pooling sizes, as well as
without the module for comparison. The find-
ings indicate that the attention module enhances
estimation accuracy with a minimal increase in
the number of parameters, particularly when the
pooling size m exceeds 1. While the increase in
FLOPs is generally negligible, it becomes more
substantial at m = 28.

Specifically, with m = 7, both FF® and
Fgy show an improvement of 0.3% over the
model without the attention module. These
accuracy enhancements are achieved with a

#Param | FLOPs | Speed
w/o GFE 1.61 1.08 699 0.836 | 0.758 | 0.051
+ED [18] 1.98 1.21 580 0.853 | 0.783 | 0.047
Ours 1.99 1.26 571 0.867 | 0.804 0.042

Table 6 Ablation study of granularity-aware supervision.
F, B, C and O denote the saliency of full map, boundary, cen-
ter and others, respectively. C-O indicates the combination of
center and others foregrounds. Side-outputs are the interme-
diate representations shown in Fig. 2.

‘ Setting
Side-outputs
(@) (b) (©) (d) () | (f)Ours
D3 F F F F F F
Dy, F B B B - -
Dy F C (¢} c-O - -
Gy F - - - C -
D, F cO | ¢O | CO - C
Dy F B-O B-O B-O B-O B-O
Fg 0.858 | 0.848 | 0.854 | 0.855 | 0.854 0.867
Fy 0.792 | 0.778 | 0.786 | 0.786 | 0.789 0.804
MAE 0.044 | 0.048 | 0.046 | 0.045 | 0.045 0.042

slight increase in parameters (0.03M) and FLOPs
(0.01G). Among the tested sizes, a mid-sizem = 7
offers superior performance compared to both
larger (m = 28) and smaller sizes (m = 1 and
m = 3). Consequently, the proposed GPC with
a self-attention module at m = 7 effectively
enhances estimation accuracy with a negligible
efficiency trade-off.

We additionally compare our model with the
identical split setting. The results of this com-
parison are detailed in Table 4. Since both mod-
els exhibit equivalent efficiencies, a comparison
of efficiency metrics was not conducted. The
data demonstrate that accuracy can be slightly
enhanced by employing the proposed split ratios,
which apply lower dilation ratios to high-scale
features.
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4.3.2 Global feature extractor

Subsequently, we conducted an ablation study to
evaluate the impact of the global feature extrac-
tor, with the results detailed in Table 5. Our
analysis compares our model, which utilizes an
efficient attention mechanism for global feature
extraction, against two alternatives: one with-
out any global features and another employing
extreme downsampling (ED) [18] for global fea-
ture extraction. The results indicate that incor-
porating a global feature extractor significantly
enhances estimation accuracy. This improvement
corroborates previous findings that global fea-
tures play a crucial role in salient object detection
(SOD) tasks, as highlighted in prior works [18, 49,
51].

Specifically, implementing ED atop the
encoder to extract global features notably
increases accuracy by 1.7%. The integration of
our proposed attention-based feature extractor
further amplifies F'™ by an additional 1.4%.
Such marked enhancements validate the effec-
tiveness of attention modules in assimilating
global features, affirming their utility in complex
SOD tasks.

4.3.3 Granularity-aware supervision

Finally, we evaluated the effectiveness of var-
ious deep supervision settings within the pro-
posed structure, and the results are summarized
in Table 6. Setting (a) serves as the baseline,
where both decoder side-outputs and global fea-
tures are supervised using the full saliency map.
In settings (b)-(d), the decoder side-outputs are
used to supervise saliencies of different granu-
larity. However, in settings (e) and (f), only the
decoder outputs that incorporate global features
are utilized for supervision.

The results indicate that supervising side-
outputs with different saliency granularities does
not generally enhance performance, with the
exception of our method. Specifically, the high-
level side-output D is supervised using cen-
ter saliency, and the low-level side-output D; is
supervised using boundary-other saliency, which
leads to improved performance. In contrast,
supervising the side-outputs Dy and Dy, which
do not integrate global features, does not yield
performance gains.

5 Conclusion

In this study, we introduced GAPNet, a
lightweight framework for both image and video
SOD. With granularity-aware connections, the
model fuses low- and high-level features under
supervision signals aligned with their granular-
ities, i.e., object locations for coarse levels and
boundaries for fine levels. To enhance feature
fusion within these connections, we designed
granular pyramid convolution with efficient
attention (GPC) and cross-scale attention (CSA)
strategies tailored to low-level and high-level
fusions. Furthermore, a self-attention module
was incorporated to capture global information,
enabling precise object localization with minimal
overhead. Experiments on multiple image and
video benchmarks show that GAPNet estab-
lishes newstate-of-the-art performance among
lightweight models, significantly narrowing the
gap to heavyweight counterparts.

Acknowledgements

This work was supported by A*STAR Career
Development Fund under grant No. C233312006.

Declarations of Conflict of
Interest

The authors declared that they have no conflicts
of interest to this work.

References

[1] T. Zhou, D.-P. Fan, M.-M. Cheng, ]J. Shen,
and L. Shao, “Rgb-d salient object detec-
tion: A survey,” Computational Visual Media,
vol. 7, pp. 37-69, 2021.

[2] J. Han, D. Zhang, G. Cheng, N. Liu,
and D. Xu, “Advanced deep-learning tech-
niques for salient and category-specific
object detection: A survey,” IEEE Signal
Process. Mag. (SPM), vol. 35, no. 1, pp. 84—
100, 2018.

[3] W. Wang, J. Shen, X. Dong, and A. Borji,
“Salient object detection driven by fixa-
tion prediction,” in IEEE Conf. Comput. Vis.
Pattern Recog., 2018, pp. 1711-1720.



15

[10]

[11]

Springer Nature 2021 ETgX template

C. Liu, Y. Yuan, X. Chen, H. Lu, and
D. Wang, “Spatial-temporal initialization
dilemma: towards realistic visual track-
ing,” Visual Intelligence, vol. 2, no. 1, p. 35,
2024.

Z. Zhang, Z. Cui, C. Xu, Y. Yan, N. Sebe,
and J. Yang, “Pattern-affinitive propaga-
tion across depth, surface normal and
semantic segmentation,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2019, pp. 4106-
4115.

Y. Liu, Y-H. Wu, P-S. Wen, Y.]. Shi,
Y. Qiu, and M.-M. Cheng, “Leveraging
instance-, image-and dataset-level infor-
mation for weakly supervised instance seg-
mentation,” IEEE Trans. Pattern Anal. Mach.
Intell., 2020.

M.-M. Cheng, E-L. Zhang, N. ]J. Mitra,
X. Huang, and S.-M. Hu, “Repfinder: find-
ing approximately repeated scene elements
for image editing,” ACM Trans. Graphics
(TOG), vol. 29, no. 4, pp. 1-8, 2010.

Y.-H. Wu, S.-H. Gao, J. Mei, J. Xu, D.-P.
Fan, R.-G. Zhang, and M.-M. Cheng, “JCS:
An explainable COVID-19 diagnosis sys-
tem by joint classification and segmenta-
tion,” IEEE Trans. Image Process., vol. 30, pp.
3113-3126, 2021.

C. Craye, D. Filliat, and J.-FE Goudou,
“Environment exploration for object-based
visual saliency learning,” in Int. Conf.
Robot. Autom. (ICRA).  IEEE, 2016, pp.
2303-2309.

H. Jiang, J. Wang, Z. Yuan, Y. Wu,
N. Zheng, and S. Li, “Salient object detec-
tion: A discriminative regional feature inte-
gration approach,” in IEEE Conf. Comput.
Vis. Pattern Recog., 2013, pp. 2083-2090.

W. Wang, Q. Lai, H. Fu, J. Shen, H. Ling,
and R. Yang, “Salient object detection in
the deep learning era: An in-depth sur-
vey,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 44, no. 6, pp. 3239-3259, 2021.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

N. Liu and J. Han, “DHSNet: Deep hier-
archical saliency network for salient object
detection,” in IEEE Conf. Comput. Vis. Pat-
tern Recog., 2016, pp. 678—686.

P. Zhang, D. Wang, H. Lu, H. Wang, and
X. Ruan, “Amulet: Aggregating multi-level
convolutional features for salient object
detection,” in Int. Conf. Comput. Vis., 2017,
pp- 202-211.

J.-X. Zhao, J. Liu, D.-P. Fan, Y. Cao, ]. Yang,
and M.-M. Cheng, “EGNet: Edge guidance
network for salient object detection,” in Int.
Conf. Comput. Vis., 2019, pp. 8779-8788.

J.-J. Liu, Q. Hou, M.-M. Cheng, J. Feng, and
J. Jiang, “A simple pooling-based design
for real-time salient object detection,” in
IEEE Conf. Comput. Vis. Pattern Recog., 2019,
pp. 3917-3926.

Y. Pang, X. Zhao, L. Zhang, and H. Lu,
“Multi-scale interactive network for salient
object detection,” in IEEE Conf. Comput.
Vis. Pattern Recog., 2020, pp. 9413-9422.

H. Zhou, X. Xie, J.-H. Lai, Z. Chen, and
L. Yang, “Interactive two-stream decoder
for accurate and fast saliency detection,” in
IEEE Conf. Comput. Vis. Pattern Recog., 2020,
pp- 9141-9150.

Y.-H. Wu, Y. Liu, L. Zhang, M.-M. Cheng,
and B. Ren, “Edn: Salient object detection
via extremely-downsampled network,”
IEEE Trans. Image Process., vol. 31, pp.
3125-3136, 2022.

M. Zhuge, D.-P. Fan, N. Liu, D. Zhang,
D. Xu, and L. Shao, “Salient object detec-
tion via integrity learning,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 45, no. 3, pp.
3738-3752, 2022.

K. Simonyan and A. Zisserman, “Very
deep convolutional networks for large-
scale image recognition,” in Int. Conf.
Learn. Represent., 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep
residual learning for image recognition,” in



(22]

[23]

(24]

[25]

[26]

[27]

(28]

(29]

Springer Nature 2021 ETgX template

IEEE Conf. Comput. Vis. Pattern Recog., 2016,
pp- 770-778.

Y-H. Wu, Y. Liu, X. Zhan, and M.-M.
Cheng, “P2T: Pyramid pooling transformer
for scene understanding,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 45, no. 11, pp.
12760-12771, 2023.

Y. Liu, Y-H. Wu, G. Sun, L. Zhang,
A. Chhatkuli, and L. Van Gool, “Vision
transformers with hierarchical attention,”
Machine Intelligence Research, vol. 21, no. 4,
pp. 670-683, 2024.

Y.-H. Wu, S.-C. Zhang, Y. Liu, L. Zhang,
X. Zhan, D. Zhou, J. Feng, M.-M. Cheng,
and L. Zhen, “Low-resolution self-
attention for semantic segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., 2025.

Y. Liu, X.-Y. Zhang, J.-W. Bian, L. Zhang,
and M.-M. Cheng, “Samnet: Stereoscop-
ically attentive multi-scale network for
lightweight salient object detection,” IEEE
Trans. Image Process., vol. 30, pp. 3804-3814,
2021.

M.-M. Cheng, J. Warrell, W.-Y. Lin,
S. Zheng, V. Vineet, and N. Crook, “Effi-
cient salient region detection with soft
image abstraction,” in Int. Conf. Comput.
Vis., 2013, pp. 1529-1536.

M. Sandler, A. Howard, M. Zhu,
A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and lin-
ear bottlenecks,” in IEEE Conf. Comput. Vis.
Pattern Recog., 2018, pp. 4510-4520.

G. Li and Y. Yu, “Deep contrast learning
for salient object detection,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2016, pp. 478—
487.

Q. Hou, M.-M. Cheng, X. Hu, A. Borji,
Z. Tu, and P. Torr, “Deeply supervised
salient object detection with short con-
nections,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 41, no. 4, pp. 815-828, 2019.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Y. Liu, Y-H. Wu, S.-C. Zhang, L. Liu,
M. Wu, and M.-M. Cheng, “Revisiting
computer-aided tuberculosis diagnosis,”
IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 46, no. 4, pp. 2316-2332, 2024.

G.-P. Ji, G. Xiao, Y.-C. Chou, D.-P. Fan,
K. Zhao, G. Chen, and L. Van Gool, “Video
polyp segmentation: A deep learning per-
spective,” Machine Intelligence Research,
vol. 19, no. 6, pp. 531-549, 2022.

G.-P. Ji, J. Liu, P. Xu, N. Barnes, E S.
Khan, S. Khan, and D.-P. Fan, “Frontiers
in intelligent colonoscopy,” arXiv preprint
arXiv:2410.17241, 2024.

D.-P. Fan, G.-P. Ji, G. Sun, M.-M. Cheng,
J. Shen, and L. Shao, “Camouflaged object
detection,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern
recognition, 2020, pp. 2777-2787.

G.-P. Ji, D.-P. Fan, Y.-C. Chou, D. Dai,
A. Liniger, and L. Van Gool, “Deep
gradient learning for efficient camou-
flaged object detection,” Machine Intelli-
gence Research, vol. 20, no. 1, pp. 92-108,
2023.

Z. Liu, X. Zhang, S. Luo, and O. Le Meur,
“Superpixel-based spatiotemporal saliency
detection,” IEEE Trans. Circ. Syst. Video
Technol. (TCSVT), vol. 24, no. 9, pp. 1522-
1540, 2014.

C. Yang, L. Zhang, H. Lu, X. Ruan, and
M.-H. Yang, “Saliency detection via graph-
based manifold ranking,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2013, pp. 3166—
3173.

X. Huang, Y. Zheng, J. Huang, and Y.-].
Zhang, “50 fps object-level saliency detec-
tion via maximally stable region,” IEEE
Trans. Image Process., vol. 29, pp. 1384-1396,
2019.

X. Li, H. Lu, L. Zhang, X. Ruan, and M.-
H. Yang, “Saliency detection via dense and
sparse reconstruction,” in Int. Conf. Com-
put. Vis., 2013, pp. 2976-2983.



17

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Springer Nature 2021 ETgX template

M.-M. Cheng, N. J. Mitra, X. Huang, P. H.
Torr, and S.-M. Hu, “Global contrast based
salient region detection,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 37, no. 3, pp.
569-582, 2015.

J. Wang, H. Jiang, Z. Yuan, M.-M. Cheng,
X. Hu, and N. Zheng, “Salient object detec-
tion: A discriminative regional feature inte-
gration approach,” Int. J. Comput. Vis., vol.
123, no. 2, pp. 251-268, 2017.

Z. Wy, L. Su, and Q. Huang, “Decompo-
sition and completion network for salient
object detection,” IEEE Trans. Image Pro-
cess., vol. 30, pp. 62266239, 2021.

W. Wang, S. Zhao, ]J. Shen, S. C. Hoi,
and A. Borji, “Salient object detection with
pyramid attention and salient edges,” in
IEEE Conf. Comput. Vis. Pattern Recog., 2019,
pp. 1448-1457.

W. Wang, J. Shen, M.-M. Cheng, and
L. Shao, “An iterative and cooperative top-
down and bottom-up inference network
for salient object detection,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2019, pp. 5968—
5977.

J. Li, Z. Pan, Q. Liu, and Z. Wang, “Stacked
u-shape network with channel-wise atten-
tion for salient object detection,” IEEE
Trans. Multimedia, vol. 23, pp. 1397-1409,
2020.

Z. Yao and L. Wang, “Boundary infor-
mation progressive guidance network for
salient object detection,” IEEE Trans. Multi-
media, vol. 24, pp. 4236-4249, 2021.

X. Wang, Z. Liu, V. Liesaputra, and
Z. Huang, “Feature specific progressive
improvement for salient object detection,”
Pattern Recognition, vol. 147, p. 110085,
2024.

C. Hao, Z. Yu, X. Liu, J. Xu, H. Yue, and
J. Yang, “A simple yet effective network
based on vision transformer for camou-
flaged object and salient object detection,”
IEEE Trans. Image Process., 2025.

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

J. Pei, T. Jiang, H. Tang, N. Liu, Y. Jin,
D.-P. Fan, and P.-A. Heng, “Calibnet: Dual-
branch cross-modal calibration for rgb-d
salient instance segmentation,” IEEE Trans-
actions on Image Processing, 2024.

S. Chen, X. Tan, B. Wang, and X. Hu,
“Reverse attention for salient object detec-
tion,” in Eur. Conf. Comput. Vis., 2018, pp.
234-250.

Z. Zhao, C. Xia, C. Xie, and ]. Li, “Com-
plementary trilateral decoder for fast and
accurate salient object detection,” in ACM
Int. Conf. Multimedia, 2021, pp. 4967-4975.

Y. K. Yun and W. Lin, “Towards a complete
and detail-preserved salient object detec-
tion,” IEEE Trans. Multimedia, 2023.

J. Li, S. Qiao, Z. Zhao, C. Xie, X. Chen,
and C. Xia, “Rethinking lightweight salient
object detection via network depth-width
tradeoff,” IEEE Trans. Image Process., 2023.

Y. Liu, Y.-C. Gu, X.-Y. Zhang, W. Wang, and
M.-M. Cheng, “Lightweight salient object
detection via hierarchical visual perception
learning,” IEEE Trans. Cybernetics (TCYB),
vol. 51, no. 9, pp. 4439-4449, 2021.

C. Fang, H. Tian, D. Zhang, Q. Zhang,
J. Han, and ]. Han, “Densely nested top-
down flows for salient object detection,”
Science China Information Sciences, vol. 65,
no. 8, p. 182103, 2022.

X. Zhou, K. Shen, and Z. Liu, “ADMNet:
Attention-guided densely multi-scale net-
work for lightweight salient object detec-
tion,” IEEE Trans. Multimedia, 2024.

M.-M. Cheng, S.-H. Gao, A. Borji, Y.-Q. Tan,
Z. Lin, and M. Wang, “A highly efficient
model to study the semantics of salient
object detection,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 44, no. 11, pp. 8006-8021,
2021.

Z. Wang, Y. Zhang, Y. Liu, D. Zhu,
S. A. Coleman, and D. Kerr, “Elwnet: An



Springer Nature 2021 ETgX template

extremely lightweight approach for real-
time salient object detection,” IEEE Trans.
Circ. Syst. Video Technol. (TCSV'T), 2023.

[58] Z. Wang, Y. Zhang, Y. Liu, C. Qin, S. A.
Coleman, and D. Kerr, “Larnet: Towards
lightweight, accurate and real-time salient
object detection,” IEEE Trans. Multimedia,
2023.

[59] Y. Ji, H. Zhang, Z. Zhang, and M. Liu,
“Cnn-based encoder-decoder networks for
salient object detection: A comprehensive
review and recent advances,” Information
Sciences, vol. 546, pp. 835-857, 2021.

[60] Y-H. Wu, Y. Liu, L. Zhang, W. Gao,
and M.-M. Cheng, “Regularized densely-
connected pyramid network for salient
instance segmentation,” IEEE Trans. Image
Process., vol. 30, pp. 3897-3907, 2021.

[61] J. Chen, H. Zhang, M. Gong, and Z. Gao,
“Collaborative compensative transformer
network for salient object detection,” Pat-
tern Recognition, vol. 154, p. 110600, 2024.

[62] ]J. Pei, T. Cheng, H. Tang, and C. Chen,
“Transformer-based  efficient  salient
instance segmentation networks with
orientative query,” IEEE Transactions on
Multimedia, vol. 25, pp. 1964-1978, 2022.

[63] S. Xie and Z. Tu, “Holistically-nested edge
detection,” in Int. Conf. Comput. Vis., 2015,
pp- 1395-1403.

[64] Q. Hou, M.-M. Cheng, X. Hu, A. Borji,
Z. Tu, and P. Torr, “Deeply supervised
salient object detection with short connec-
tions,” in IEEE Conf. Comput. Vis. Pattern
Recog., 2017, pp. 5300-5309.

[65] Z. Wu, L. Su, and Q. Huang, “Cascaded
partial decoder for fast and accurate salient
object detection,” in IEEE Conf. Comput.
Vis. Pattern Recog., 2019, pp. 3907-3916.

[66] Y. Liu, M.-M. Cheng, X.-Y. Zhang, G.-Y.
Nie, and M. Wang, “DNA: Deeply-
supervised nonlinear aggregation for
salient object detection,” IEEE Trans.

Cybernetics (TCYB), 2021.

[67] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang,
and Z. Tu, “Deeply-supervised nets,” in
Artificial intelligence and statistics. ~ Pmlr,
2015, pp. 562-570.

[68] J. Wei, S. Wang, Z. Wu, C. Su, Q. Huang,
and Q. Tian, “Label decoupling frame-
work for salient object detection,” in IEEE
Conf. Comput. Vis. Pattern Recog., 2020, pp.
13025-13 034.

[69] D.-P. Fan, Y. Zhai, A. Borji, J. Yang, and
L. Shao, “Bbs-net: Rgb-d salient object
detection with a bifurcated backbone strat-
egy network,” in European conference on
computer vision.  Springer, 2020, pp. 275-
292.

[70] Z.Luo, N. Liu, W. Zhao, X. Yang, D. Zhang,
D.-P. Fan, F. Khan, and J. Han, “Vscode:
General visual salient and camouflaged
object detection with 2d prompt learning,”
in IEEE Conf. Comput. Vis. Pattern Recog.,
2024, pp. 17169-17180.

[71] B.-W. Yin and Z. Lin, “Exploring salient
object detection with adder neural net-
works,” in AAAI Conf. Artif. Intell., vol. 39,
no. 9, 2025, pp. 9490-9498.

[72] D.-P. Fan, W. Wang, M.-M. Cheng, and
J. Shen, “Shifting more attention to video
salient object detection,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2019, pp. 8554—
8564.

[73] B. Wang, W. Liu, G. Han, and S. He,
“Learning long-term structural dependen-
cies for video salient object detection,”
IEEE Trans. Image Process., vol. 29, pp. 9017-
9031, 2020.

[74] C. Chen, G. Wang, C. Peng, Y. Fang,
D. Zhang, and H. Qin, “Exploring rich and
efficient spatial temporal interactions for
real-time video salient object detection,”
IEEE Trans. Image Process., vol. 30, pp. 3995
4007, 2021.



19

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

Springer Nature 2021 ETgX template

G.-P.Ji,K. Fu, Z. Wu, D.-P. Fan, J. Shen, and
L. Shao, “Full-duplex strategy for video
object segmentation,” in Int. Conf. Comput.
Vis., 2021, pp. 4922-4933.

S. Gao, H. Xing, W. Zhang, Y. Wang,
Q. Guo, and W. Zhang, “Weakly super-
vised video salient object detection via
point supervision,” in ACM Int. Conf. Mul-
timedia, 2022, pp. 3656-3665.

R. Cong, W. Song, J. Lei, G. Yue, Y. Zhao,
and S. Kwong, “Psnet: Parallel symmet-
ric network for video salient object detec-
tion,” IEEE Transactions on Emerging Topics
in Computational Intelligence, vol. 7, no. 2,
pp. 402-414, 2022.

R. Qian, W. Lin, J. See, and D. Li, “Control-
lable augmentations for video representa-
tion learning,” Visual Intelligence, vol. 2,
no. 1, p. 1, 2024.

B. Chen, Z. Chen, X. Hu, J. Xu, H. Xie,
J. Qin, and M. Wei, “Dynamic message
propagation network for rgb-d and video
salient object detection,” ACM Transactions
on Multimedia Computing, Communications
and Applications, vol. 20, no. 1, pp. 1-21,
2023.

S. Ren, C. Han, X. Yang, G. Han, and S. He,
“Tenet: Triple excitation network for video
salient object detection,” in Eur. Conf. Com-
put. Vis.  Springer, 2020, pp. 212-228.

M. Zhang, J. Liu, Y. Wang, Y. Piao,
S. Yao, W. Ji, J. Li, H. Lu, and Z. Luo,
“Dynamic context-sensitive filtering net-
work for video salient object detection,” in
Int. Conf. Comput. Vis., 2021, pp. 1553-1563.

X. Zhao, H. Liang, P. Li, G. Sun, D. Zhao,
R. Liang, and X. He, “Motion-aware mem-
ory network for fast video salient object
detection,” I[EEE Trans. Image Process.,
vol. 33, pp. 709-721, 2024.

N. Liu, K. Nan, W. Zhao, X. Yao, and
J. Han, “Learning complementary spatial—-
temporal transformer for video salient
object detection,” IEEE Trans. Neur. Net.

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

Learn. Syst., vol. 35,no. 8, pp. 10663-10 673,
2024.

Y.-X. Li, C.-L.-Z. Chen, S. Li, A.-M. Hao,
and H. Qin, “A novel divide and conquer
solution for long-term video salient object
detection,” Machine Intelligence Research,
vol. 21, no. 4, pp. 684-703, 2024.

N. Liu, J. Han, and M.-H. Yang, “Picanet:
Pixel-wise contextual attention learning for
accurate saliency detection,” IEEE Trans.
Image Process., vol. 29, pp. 6438-6451, 2020.

Y.-H. Wu, Y. Liu, J. Xu, J.-W. Bian, Y.-C. Gu,
and M.-M. Cheng, “MobileSal: Extremely
efficient rgb-d salient object detection,”
IEEE Trans. Pattern Anal. Mach. Intell., 2021.

F. Milletari, N. Navab, and S.-A. Ahmadi,
“V-Net: Fully convolutional neural net-
works for volumetric medical image seg-
mentation,” in International Conference on
3D Vision. 1EEE, 2016, pp. 565-571.

N. Liu, N. Zhang, K. Wan, L. Shao, and
J. Han, “Visual saliency transformer,” in
Int. Conf. Comput. Vis., 2021, pp. 4722-4732.

A. Paszke, S. Gross, F. Massa, A. Lerer,
J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga et al., “PyTorch:
An imperative style, high-performance
deep learning library,” in Adv. Neural
Inform. Process. Syst., 2019, pp. 8026-8037.

D. Kingma and J. Ba, “Adam: A method for
stochastic optimization,” in Int. Conf. Learn.
Represent., 2015.

K. Fu, D.-P. Fan, G.-P. Ji, Q. Zhao, ]J. Shen,
and C. Zhu, “Siamese network for rgb-d
salient object detection and beyond,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 44,
no. 9, pp. 5541-5559, 2022.

E. Ilg, N. Mayer, T. Saikia, M. Keuper,
A. Dosovitskiy, and T. Brox, “Flownet 2.0:
Evolution of optical flow estimation with
deep networks,” in IEEE Conf. Comput. Vis.
Pattern Recog., 2017, pp. 2462-2470.



[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

Springer Nature 2021 ETgX template

L. Wang, H. Lu, Y. Wang, M. Feng,
D. Wang, B. Yin, and X. Ruan, “Learning
to detect salient objects with image-level
supervision,” in IEEE Conf. Comput. Vis.
Pattern Recog., 2017, pp. 136-145.

G. Li and Y. Yu, “Visual saliency based
on multiscale deep features,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2015, pp. 5455—
5463.

Q. Yan, L. Xu, J. Shi, and J. Jia, “Hierarchical
saliency detection,” in IEEE Conf. Comput.
Vis. Pattern Recog., 2013, pp. 1155-1162.

Y. Li, X. Hou, C. Koch, J. M. Rehg, and
A. L. Yuille, “The secrets of salient object
segmentation,” in IEEE Conf. Comput. Vis.
Pattern Recog., 2014, pp. 280-287.

T. Wang, L. Zhang, S. Wang, H. Lu,
G. Yang, X. Ruan, and A. Borji, “Detect
globally, refine locally: A novel approach to
saliency detection,” in IEEE Conf. Comput.
Vis. Pattern Recog., 2018, pp. 3127-3135.

Y. Zeng, H. Lu, L. Zhang, M. Feng, and
A. Borji, “Learning to promote saliency
detectors,” in IEEE Conf. Comput. Vis. Pat-
tern Recog., 2018, pp. 1644-1653.

Y. Wang, R. Wang, X. Fan, T. Wang, and
X. He, “Pixels, regions, and objects: Mul-
tiple enhancement for salient object detec-
tion,” in IEEE Conf. Comput. Vis. Pattern
Recog., 2023, pp. 10031-10 040.

E Perazzi, J. Pont-Tuset, B. McWilliams,
L. Van Gool, M. Gross, and A. Sorkine-
Hornung, “A benchmark dataset and eval-
uation methodology for video object seg-
mentation,” in IEEE Conf. Comput. Vis. Pat-
tern Recog., 2016, pp. 724-732.

F. Li, T. Kim, A. Humayun, D. Tsai, and
J. M. Rehg, “Video segmentation by track-
ing many figure-ground segments,” in Int.
Conf. Comput. Vis., 2013, pp. 2192-2199.

W. Wang, J. Shen, and L. Shao, “Consistent
video saliency using local gradient flow
optimization and global refinement,” IEEE

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Trans. Image Process., vol. 24, no. 11, pp.
4185-4196, 2015.

R. Margolin, L. Zelnik-Manor, and A. Tal,
“How to evaluate foreground maps?” in
IEEE Conf. Comput. Vis. Pattern Recog., 2014,
pp- 248-255.

D.-P. Fan, M.-M. Cheng, Y. Liu, T. Li, and
A. Borji, “Structure-measure: A new way
to evaluate foreground maps,” in Int. Conf.
Comput. Vis., 2017, pp. 4548-4557.

D.-P. Fan, C. Gong, Y. Cao, B. Ren, M.-M.
Cheng, and A. Borji, “Enhanced-alignment
measure for binary foreground map evalu-
ation,” in IJCAI, 2018, pp. 698-704.

J. Zhao, Y. Zhao, ]J. Li, and X. Chen, “Is
depth really necessary for salient object
detection?” in ACM Int. Conf. Multimedia,
2020, pp. 1745-1754.

H. Li, G. Chen, G. Li, and Y. Yu, “Motion
guided attention for video salient object
detection,” in Int. Conf. Comput. Vis., 2019,
pp. 7274-7283.

P. Yan, G. Li, Y. Xie, Z. Li, C. Wang, T. Chen,
and L. Lin, “Semi-supervised video salient
object detection using pseudo-labels,” in
Int. Conf. Comput. Vis., 2019, pp. 7284-7293.

W. Zhao, J. Zhang, L. Li, N. Barnes,
N. Liu, and J. Han, “Weakly supervised
video salient object detection,” in IEEE
Conf. Comput. Vis. Pattern Recog., 2021, pp.
16 826-16 835.

Yu-Huan Wu received his Ph.D. degree
from Nankai University in 2022. He
is a research scientist at the Insti-
tute of High Performance Computing
(IHPC), A*STAR, Singapore. He has
published 10+ papers on top-tier con-
ferences and journals such as IEEE
TPAMI/TIP/TNNLS/CVPR/ICCV.

His research interests include computer

vision and deep learning.
E-mail: wyh.nku@gmail.com
ORCID iD: 0000-0001-8666-3435



21

Springer Nature 2021 ETgX template

Wei Liu received the bachelor’s and
master’s degrees from Huazhong Uni-
versity of Science and Technology,
China in 2015 and 2018, respectively.

2 He then obtained the Ph.D. degree
3 from Nanyang Technological Univer-
sity, Singapore in 2022. He is cur-

rently a research scientist at Institute of
High Performance Computing (IHPC),
Agency for Science, Technology and Research (A*STAR), Sin-
gapore. His research interests include computer vision and
efficient machine learning.
E-mail: liuw1204@gmail.com (Corresponding author)
ORCID iD: 0000-0002-9770-8923

Zi-Xuan Zhu received his bachelor’s
degree from Nankai University in 2025.
He is pursuing his doctoral degree
under the supervision of Prof. Deng-
Ping Fan in Nankai University. His
research interests include computer
vision and deep learning.

E-mail: zzxnku@mail nankai.edu.cn

ORCID iD: 0009-0006-4357-4233

Zizhou Wang received his Ph.D. degree
in computer science from Sichuan
University in 2022. He is currently a
research scientist in Institute of High
) Performance ~ Computing  (IHPC),
Agency for Science, Technology and
A \ Research (A*STAR), Singapore. His
current research interests include
robust machine learning and Intelligent

medical imaging.
E-mail: wang_zizhou@ihpc.a-star.edu.sg
ORCID iD: 0000-0003-2234-9409

Yong Liu is Deputy Department Direc-

tor, Computing & Intelligence Depart-

ment at Institute of High Performance

Computing (IHPC), A*STAR, Singa-

= pore. He is also Adjunct Associate Pro-

3 fessor at Duke-NUS Medical School,

NUS and Adjunct Principal Investiga-

‘ " tor at Singapore Eye Research Institute

(SERI). He has led multiple research

projects in multimodal machine learning, medical imaging
analysis, especially Al in healthcare.

E-mail: liuyong@ihpc.a-star.edu.sg

ORCID iD: 0000-0002-1590-2029

Liangli Zhen received his Ph.D. degree
from Sichuan University in 2018. He

| o~ is a senior scientist and group man-
. ager at the Institute of High Perfor-
b mance Computing (IHPC), A*STAR,

Singapore. His research interests include

machine learning and optimization. He

has led/co-led multiple research initia-

tives in robust multimodal learning. His
research findings have been published in top tier journals
and conferences, including IEEE TPAMI, TNNLS, ICCV, and
CVPR.

E-mail: llzhen@outlook.com (Corresponding author)
ORCID iD: 0000-0003-0481-3298



	Introduction
	Related Work
	Methodology
	Network Structure
	Backbone encoder
	Global feature extractor
	Decoder network

	Multi-scale Feature Fusion
	Granular pyramid convolution with efficient self-attention
	Cross-scale attention mechanism
	Video feature fusion

	Granularity-aware Deep Supervision
	Decomposition of ground-truth saliency map
	Loss function


	Experiments
	Experimental Setup
	Experimental Comparisons
	Quantitative comparison
	Qualitative comparison

	Ablation Study
	Attention module in GPC
	Global feature extractor
	Granularity-aware supervision


	Conclusion

