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Abstract: Semantic segmentation is fundamental to vision systems requiring pixel-level scene understanding, yet
deploying it on resource-constrained devices demands efficient architectures. Although existing methods achieve
real-time inference through lightweight designs, we reveal their inherent limitation: misalignment between class
representations and image features caused by a per-pixel classification paradigm. With experimental analysis, we find
that this paradigm results in a highly challenging assumption for efficient scenarios: Image pixel features should not
vary for the same category in different images. To address this dilemma, we propose a coupled dual-branch offset
learning paradigm that explicitly learns feature and class offsets to dynamically refine both class representations
and spatial image features. Based on the proposed paradigm, we construct an efficient semantic segmentation
network, OffSeg. Notably, the offset learning paradigm can be adopted to existing methods with no additional
architectural changes. Extensive experiments on four datasets, including ADE20K, Cityscapes, COCO-Stuff-164K,
and Pascal Context, demonstrate consistent improvements with negligible parameters. For instance, on the ADE20K
dataset, our proposed offset learning paradigm improves SegFormer-B0, SegNeXt-T, and Mask2Former-Tiny by 2.7%,
1.9%, and 2.6% mIoU, respectively, with only 0.1-0.2M additional parameters required.

Project Page: https://github.com/HVision-NKU/OffSeg

1 Introduction

Semantic segmentation, which aims to assign category labels
to every image pixel, plays a vital role in computer vision
applications [13, 36, 63, 15, 28, 24, 25, 20, 48, 49]. While re-
cent advances in standard models [30, 29, 56, 38, 60, 39, 62]
have achieved remarkable segmentation accuracy, their com-
putational and parametric complexity renders them imprac-
tical for resource-constrained scenarios. This has spurred
significant interest in efficient semantic segmentation mod-
els [46, 18, 34, 41, 37, 51], which prioritize real-time infer-
ence and minimal parameters.

Conventional segmentation frameworks typically use high-
dimensional image features, rich class representations, and a
large number of parameters, which together yield superior
performance compared to more compact architectures. This
phenomenon aligns with the neural scaling law, where model
capacity positively correlates with segmentation accuracy
until it is able to reach computational resource constraints.
In contrast, efficiency-oriented architectures [51, 50, 46, 42]
face an inherent trade-off: aggressive model compression
weakens their capacity to align category semantics with lo-
calized visual cues. This misalignment results in blurred
object boundaries, missed small instances, and inconsistent
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Figure 1 Comparisons with popular efficient segmentation meth-
ods on the ADE20K [61] dataset. We can see from the figure that
our method achieves the best trade-off between performance and
computations.

predictions, all of which are further intensified by the prevail-
ing per-pixel classification paradigm (see Fig. 2(a)). While
existing works employ lightweight backbones [18, 26, 41]
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Table 1 Comparison of different semantic segmentation paradigms. ‘Fea.’ and ‘Rep.’ donate feature adaptation and class representation
adaptation, respectively.

Paradigm Fea. Rep. Interaction Alignment Overhead

Per-Pixel Classification ✗ ✗ ✗ Static unidirectional Matrix multiplication
Mask Classification ✗ ✓ Cross-attention Dynamic but asymmetric Transformer decoder
Offset Learning ✓ ✓ Dual-decoupled offsets Elastic bidirectional Matrix multiplication

or spatial downsampling [22, 58, 45] to achieve efficient per-
formance, they largely overlook the fundamental challenge
of jointly refining category and feature representations under
strict parametric constraints.

To uncover the fundamental issues inherent in the per-pixel
classification paradigm, we employ the ideal class representa-
tion (feature) mining method to derive optimal class-specific
representations for individual images. Statistical analysis
(Fig. 3) reveals that the similarity between optimal class
representations of the same category across different im-
ages is remarkably low. This finding shows that using fixed
class representations for all images, as in the per-pixel clas-
sification approach, is suboptimal since it fails to adapt to
the unique image features and class-specific details in each
image.

Based on the observations of the fundamental challenge, we
propose an offset learning paradigm, a novel segmentation
method that can explicitly learn and rectify the deviation
between class representations and image features through
learnable feature offsets (FOs) and class offsets (COs). Our
key insight is that, while efficient models lack sufficient pa-
rameters to model ideal category-feature relationships, they
can effectively learn to predict the offset between initially
coarse representations and their optimal counterparts. Specif-
ically, our offset learning paradigm consists of two primary
branches: the Class Offset Learning branch and the Feature
Offset Learning branch. These two branches are designed to
learn COs and FOs, respectively, enabling flexibility of both
image features and class representations.

As shown in Fig. 2(b), in addition to the per-pixel segmen-
tation paradigm, there exists a mask-based segmentation
paradigm [11, 10, 4], which employs cross-attention to facili-
tate interaction between learnable queries and image features.
This approach enables queries to learn image-specific char-
acteristics adaptively. However, it has two inherent limita-
tions: (1) It only adjusts the queries while leaving the image
features static, and (2) the cross-attention introduces signif-
icant computational overhead. As summarized in Tab. 1,
our method distinguishes itself from these two paradigms
through two key advantages: (1) the dual adaptability of both
image features and class representations, and (2) negligible
interaction overhead.

Based on our proposed offset learning paradigm (Fig. 2(c)),
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Figure 2 Visual comparison of different semantic segmentation
paradigms. From left to right, the figures sequentially illustrate
per-pixel classification, mask classification, and our proposed offset
learning paradigm.

we design a straightforward segmentation network
named OffSeg, which consists solely of a backbone and
a pixel decoder. As a plug-and-play paradigm, we apply our
framework to SegNeXt [18] (CNN-based), SegFormer [46]
(Transformer-based), and Mask2Former [10] (mask classifi-
cation) to demonstrate its effectiveness and flexibility. Exten-
sive experiments across four benchmark datasets show that
the results consistently validate the efficiency and effective-
ness of our method. Performance improvements achieved
across different architectures and datasets highlight the ro-
bustness and generalizability of our approach. In Fig. 1, we
present the performance of our model across different scales.
The results demonstrate that our OffSeg achieves a superior
balance between performance and computational efficiency.

To sum up, our main contributions can be summarized as
follows:

• We identify the core limitation of per-pixel segmenta-
tion through statistical analysis and ideal class repre-
sentation (feature) mining, exposing the intrinsic mis-
alignment between static image features and class rep-
resentations.

• We propose a parameter-efficient offset learning
paradigm with dual branches that jointly adapt image
features and class representations with nearly negligible
computational overhead.

• Extensive experiments demonstrate superior perfor-
mance of our proposed OffSeg and effectiveness over
previous per-pixel classification (CNN, Transformer)
and mask classification paradigms.
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2 Related Work

2.1 Traditional Semantic Segmentation
Semantic segmentation has witnessed significant advance-
ments through large-scale models that prioritize accuracy
over computational efficiency. Pioneering works like fully
convolutional networks (FCN) [31] established the foun-
dation by replacing fully connected layers with convolu-
tional operations, enabling dense pixel-wise predictions.
With this paradigm established, subsequent CNN-based
works [1, 36, 52, 59, 17, 54, 43, 57, 27] have enhanced
FCN from various perspectives. For example, U-Net [36]
further enhances feature localization through symmetric
encoder-decoder structures and skip connections. From
the perspective of context aggregation, DeepLab series
[6, 7, 8, 9] employ atrous spatial pyramid pooling (ASPP)
to capture multi-scale contextual information. PSPNet [59]
proposes pyramid pooling modules to aggregate global con-
text across different sub-regions. Benefiting from the suc-
cess of attention mechanisms [40, 14], Transformer-based
approaches [60, 55, 38, 35, 21] have achieved remarkable
results. For instance, SERE [60] redefines semantic segmen-
tation as a sequence-to-sequence prediction task, leverag-
ing global self-attention to model full-image context. Un-
like the per-pixel classification paradigm, MaskFormer se-
ries [11, 10] introduces a mask classification paradigm,
where learnable queries interact with image features through
a transformer decoder.

2.2 Efficient Semantic Segmentation
While traditional models achieve high segmentation accu-
racy, their computational demands hinder real-time appli-
cations, driving the development of efficient semantic seg-
mentation works [46, 18, 4, 51, 16, 58, 44, 41, 37, 50, 42,
45]. From the perspective of the backbone network, Seg-
Former [46] proposes a lightweight and hierarchically struc-
tured transformer encoder, while SegNeXt [18] proposes a
more effective convolutional attention solely through multi-
scale convolutions to construct an efficient backbone. LR-
Former [45] introduces a highly-efficient transformer with
linear attention, which is computed in a very low resolu-
tion space. For the decoder, FeedFormer [37] employs a
transformer that treats image features as queries to extract
structural information. VWFormer [47] augments multi-
scale representations by interacting with multiple windows
of different scales through cross-attention. CGRSeg [34] uti-
lizes pyramid context-guided spatial feature reconstruction
to enhance the ability of foreground objects representation
from both horizontal and vertical dimensions.
For efficient segmentation models, since the mask classifica-
tion paradigm requires a computationally heavy transformer
decoder for feature interaction, they all adopt the per-pixel
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Figure 3 Heatmap visualizations of the ideal class representations
similarity. We can observe that the correlations between different
ideal class representations of the same category are very low.

classification segmentation paradigm. Although per-pixel
classification incurs little computational overhead, it inher-
ently suffers from the misalignment between image features
and class representations. The dilemma becomes more pro-
nounced in lightweight scenarios (Fig. 3), which motivates
us to develop a segmentation paradigm tailored for efficient
semantic segmentation.

3 Method

3.1 Revisiting Per-pixel Classification

Per-pixel classification, the cornerstone of conventional se-
mantic segmentation, independently assigns labels to each
pixel by comparing its feature vector with predefined cate-
gory prototypes. Traditional per-pixel classification maps
pixel embeddings E ∈ RHW×C to class scores P via a 1×1
convolution:

Pi,j = Wc ·E⊤
i,j , (1)

where W ∈ RK×C is learnable parameter for K classes, c
is the class index. This paradigm treats each pixel indepen-
dently, ignoring contextual correlations.
While widely adopted, this paradigm suffers from two crit-
ical issues in efficient segmentation scenarios. First, the
per-pixel classification paradigm relies on fixed class rep-
resentations to categorize pixels. Second, this approach
assumes that the network can learn identical features for the
same category across different images. However, our subse-
quent analysis in Sec. 3.2 demonstrates that this assumption
is fundamentally unattainable. This misalignment between
fixed class representations and diverse image features serves
as compelling evidence for the necessity of adaptive mecha-
nisms in modern segmentation frameworks.
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Figure 4 Framework of the proposed OffSeg. Given an input image, we first use the encoder to extract the multi-scale features and then
use the pixel decoder to generate the image feature. The offset learning paradigm contains two branches: Class offset learning branch and
Feature offset learning branch. With the learned class offset (CO) and feature offset (FO), we guide the initial feature to aligned space. We
denote the dimension of matrix multiplication by grey.

3.2 Ideal Class Representation (Feature) Min-
ing

To theoretically demonstrate the necessity of adaptive class
representations and image features, we derive optimal per-
image class prototypes through inverse reasoning based on
ground-truth masks. Given an input image with ground-truth
mask M ∈ RK×HW and its deep feature E ∈ RHW×C , the
ideal class prototypes W∗ ∈ RK×C should satisfy: M =
W∗ · E⊤, where each row of W∗ represents the optimal
prototype for a specific class. Solving this linear system
yields:

W∗ = M ·
(
E⊤)† , (2)

where (·)† denotes the Moore-Penrose pseudoinverse.
By recomputing masks via Mpred = W∗ ·E⊤, we achieve
near-perfect reconstruction with around 95% mIoU on the
ADE20K dataset, confirming the theoretical validity of W∗.
With such a mathematical derivation, we conduct a simi-
larity analysis using SegFormer [46] (an efficient network
with 4.3M learnable parameters). Firstly, we randomly se-
lect six categories (i.e., , building, sky, floor, tree, person,
glass) and compute W∗ for 10 images per category for a
better view. As shown in Fig. 3, we visualize their pairwise
similarity via heatmaps. Strikingly, the ideal class repre-
sentations exhibit less similarity than our common sense.
The low correlation heatmap patterns reveal that optimal
class representations vary drastically across images for the
same class. This phenomenon stems from a fundamental
tension in efficient models: aggressive feature compression
amplifies intra-class feature variance, forcing W∗ to diverge

significantly to fit distorted features. The above analysis
reveals two critical implications:

• Fixed prototypes fail: Fixed class representations can-
not universally align with highly variable features of
different images in efficient models.

• Fixed features fail: The relationship W∗ ∝ f(E) im-
plies that distorted features also hinder prototype stabil-
ity, which needs a vicious cycle requiring joint correc-
tion.

3.3 Offset Learning Paradigm
Our offset learning paradigm redefines the segmentation
paradigm as a dual-decoupled alignment process:

M = (W +∆W) · (E+∆E)⊤, (3)

which departs our method from conventional per-pixel classi-
fication [7, 18, 19, 59] and mask-centric approaches [11, 10].
The core innovation lies in the class offset learning and fea-
ture offset learning branches that collaboratively refine class
prototypes and spatial features through decoupled attention
mechanisms as shown in Fig. 4.
To be specific, given the image feature E ∈ RHW×C and
class embedding W ∈ RK×C , we compute a coupled atten-
tion matrix Ac:

Ac = W ·E⊤, (4)

where Ac ∈ RK×HW . This matrix encodes correlations
between classes and spatial positions and is used in the
subsequent class offset learning branch and feature offset
learning branch.
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Class offset learning dynamically adjusts class representa-
tions based on spatial context, alleviating the rigidity of fixed
class embeddings. First, we apply the softmax normalization
along spatial dimensions SoftmaxS to generate class-wise
attention weights:

Acls = SoftmaxS(Ac) ∈ RK×HW , (5)

where each row ak ∈ Acls indicates the spatial importance
distribution for class k. Then, we aggregate spatial features
weighted by class attention:

Fcls = Acls ·E ∈ RK×C , (6)

where Fcls contains class-specific prototypes that encode
global spatial distributions. Finally, we generate class offsets
via an MLP:

∆W = MLP(Fcls) ∈ RK×C , (7)

and adjust original representations as follows:

Wadj = W +∆W. (8)

This branch learns image-specific offsets to align class em-
beddings with corresponding image features, narrowing their
representational gap.
Feature offset learning refines image features by injecting
class-aware semantics. The intention is to overcome the local
ambiguity in per-pixel classification. As shown in Fig. 4,
the feature offset learning branch is dual to the class offset
learning branch.
To be specific, like the class offset learning branch, we first
apply softmax along the class dimension SoftmaxK and
transpose for spatial alignment:

Apos = (SoftmaxK(Ac))
T ∈ RHW×K , (9)

where each row ai ∈ Apos represents the class probability
distribution at position i. Then, we fuse class semantics into
spatial positions via the following equation:

Fpos = Apos ·W ∈ RHW×C , (10)

where Fpos encodes position-wise semantic guidance from
all classes. Finally, we adopt an MLP to generate feature
offset:

∆E = MLP(Fpos) ∈ RHW×C , (11)

and use it to guide the original features:

Eadj = E+∆E. (12)

The final segmentation masks are generated through bidirec-
tional elastic alignment:

M = Wadj ·ET
adj, (13)

which is another form of Eqn. 3.
We have summarized the main differences between our
offset learning paradigm and other semantic segmentation
paradigms in Tab. 1. Different from per-pixel classifica-
tion (e.g., , SegFormer [46], SegNeXt [18]), which relies
on static alignment between fixed features and rigid class
embeddings, or mask classification (e.g., , MaskFormer [11],
Mask2Former [10]) that dynamically refines class queries
by a heavy transformer decoder, our framework uniquely
introduces bidirectional offset learning with even negligi-
ble learnable parameters. This method enables symmetric
adaptation: class representations can be adjusted through
class-specific spatial prototypes, while image features can be
refined by position-aware semantic guidance. By decoupling
class- and position-wise interactions into two distinct path-
ways, our method achieves elastic feature-class alignment,
where both modalities co-evolve to capture instance-specific
geometries and contextual semantics. This contrasts sharply
with the unidirectional or hard-coded alignment strategies in
existing paradigms.

3.4 Overall Architecture
To validate the efficiency and effectiveness of our proposed
offset learning paradigm, we design a standard semantic seg-
mentation model with the following efficient components
without structural modifications. For the backbone, we em-
ploy a hybrid architecture named EfficientFormerV2 [23],
which achieves a balance between parameter efficiency and
performance through a fine-grained joint search strategy. For
multi-scale feature aggregation, we select FreqFusion [5],
which fuses two scale features with frequency-aware op-
erators. Notably, when combined with our offset learn-
ing paradigm, the entire model introduces nearly negligible
learnable parameters (0.1-0.2M).

4 Experiments

4.1 Experimental Settings
Datesets. We evaluate our method on four widely
adopted semantic segmentation benchmarks: ADE20K [61],
Cityscapes [13], COCO-Stuff [3], and Pascal Context [33].
ADE20K [61] is a scene parsing dataset with 150 object/stuff
categories, containing 20K/2K/3K images for training/vali-
dation/testing. It features diverse indoor and outdoor scenes
with complex occlusions. Cityscapes [13] focuses on urban
driving scenarios, providing 5,000 high-resolution images
(2048×1024) with 19 semantic classes. COCO-Stuff [3]
comprises 118K training and 5K validation images with 171
classes (80 things + 91 stuff). Its long-tailed distribution chal-
lenges model generalization. PASCAL Context [33] dataset
comprises 59 semantic categories as foreground objects, with
4,996 training images and 5,104 validation images.
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Table 2 Performance comparison of state-of-the-art methods on ADE20K, Cityscapes and COCO-Stuff datasets. FLOPs (G) is computed at
input resolutions of 512×512 for ADE20K and COCO-Stuff, and 2048×1024 for Cityscapes.

Method Params (M)
ADE20K Cityscapes COCO-Stuff

FLOPs (G) mIoU FLOPs (G) mIoU FLOPs (G) mIoU

SegFormer-B0 [46] 3.8 8.4 37.4 125.5 76.2 8.4 35.6
RTFormer-Slim [42] 4.8 17.5 36.7 - 76.3 - -
FeedFormer-B0 [37] 4.5 7.8 39.2 107.4 77.9 - -
Seaformer-L [41] 14.0 6.5 42.7 - - - -
VWFormer-B0 [47] 3.7 5.1 38.9 - 77.2 5.1 36.2
CGRSeg-T [34] 9.4 4.0 43.6 - - 4.0 42.2
EDAFormer-T [53] 4.9 5.6 42.3 151.7 78.7 5.6 40.3
OffSeg-T 6.2 5.3 44.2 44.8 78.9 5.3 41.9

SegFormer-B1 [46] 13.7 15.9 42.2 243.7 78.5 15.9 40.2
SegNeXt-S [18] 13.9 15.9 44.3 124.6 81.3 15.9 42.2
RTFormer-Base [42] 16.8 67.4 42.1 - 79.3 26.6 35.3
VWFormer-B1 [47] 13.7 13.2 43.2 - 79.0 - 41.5
PEM-STDC1 [4] 17.0 16.0 39.6 - - - -
OffSeg-B 13.0 10.3 45.9 86.5 80.5 10.3 44.3

SenFormer [2] 59.0 179.0 46.0 - - - -
SegFormer-B2 [46] 27.5 25.9 45.6 717.1 81.0 26.0 44.6
MaskFormer [11] 42.0 55.0 46.7 - - - -
Mask2Former [10] 47.0 74.0 47.7 - - - -
FeedFormer-B2 [37] 29.1 42.7 48.0 522.7 81.5 - -
PEM-STDC2 [4] 21.0 19.3 45.0 - - - -
OffSeg-L 26.4 17.1 48.5 143.4 81.6 17.1 46.0

Implementation details. Our implementation is based on
the MMSegmentation [12] with PyTorch. Following previ-
ous works [46, 18, 34, 11, 10], we adopt the AdamW [32]
optimizer with poly learning rate decay and 1,500 itera-
tions linear warmup for all models, without specific tun-
ing for any other settings. The batch size is set to 16
for the ADE20K/COCO-Stuff/Pascal Context datasets and
8 for the Cityscapes dataset. During training, the im-
age size is cropped to 512×512 for ADE20K and COCO-
Stuff, 480×480 for Pascal Context, and 1024×1024 for the
Cityscapes dataset. We adopt the standard data augmenta-
tion and train 160k iterations on ADE20K and Cityscapes
datasets and 80k iterations on the COCO-Stuff and Pascal
Context datasets. During inference, we employ single-scale
testing for all datasets. All experiments are conducted on 8
NVIDIA RTX 3090 GPUs.

4.2 Main Results
We evaluate our method on three standard semantic seg-
mentation benchmarks: ADE20K, Cityscapes and COCO-
Stuff, as detailed in Tab. 2. For the ADE20K dataset, the
proposed OffSeg-T attains 44.2 mIoU on ADE20K, sur-
passing EDAFormer-T by 1.9 mIoU while reducing com-
putations by 24%. OffSeg-B establishes a strong accuracy-
efficiency trade-off: 45.9 mIoU on ADE20K (10.3G FLOPs),
outperforming SegNeXt-S (+1.6) and PEM-STDC1 (+6.3)
with 35% lower FLOPs than SegNeXt-S. At the large scale,

OffSeg-L achieves a 48.5 mIoU score on ADE20K with
17.1G FLOPs, outperforming Mask2Former (+0.8) with
4.3× fewer FLOPs
On the Cityscapes dataset, our OffSeg-L achieves superior
results while using only a quarter of the computational cost
required by FeedFormer-B2. On the COCO-Stuff dataset,
our OffSeg-B surpasses RTFormer-Base by 9.0 mIoU with
less than half of its computational cost.
These experimental results suggest that our dual-decoupled
offset learning paradigm can effectively address the mis-
alignment between class representations and image features,
particularly in class-dense and challenging scenarios, like
ADE20K and COCO-Stuff.

4.3 Generalization Ability
To validate the broad applicability of our offset learning
paradigm, we integrate it into three representative models:
SegNeXt [18] (CNN-based), SegFormer [46] (Transformer-
based), and Mask2Former [10] (mask classification). For
the per-pixel classification framework models (SegNeXt
and SegFormer), we adapt our approach by simply re-
placing the final 1×1 convolutional layer with our offset
learning paradigm. For the mask classification framework
(Mask2Former), we leverage offset learning to align mask
embeddings with per-pixel embeddings while remaining
other parts unchanged.
SegNeXt with offset learning. To evaluate the robustness
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Table 3 Performance comparison of SegNeXt [18] and SegNeXt w/ offset learning on ADE20K, Cityscapes, Pascal Context, and COCO-
Stuff datasets. FLOPs (G) is computed at input resolutions of 2048×1024 for Cityscapes and 512×512 for other datasets.

Method Offset Params (M)
ADE20K Cityscapes Pascal Context COCO-Stuff

FLOPs (G) mIoU FLOPs (G) mIoU FLOPs (G) mIoU FLOPs (G) mIoU

SegNeXt-T 4.3 6.6 41.1 50.5 79.8 6.6 51.2 6.6 38.7
SegNeXt-T ✓ 4.4 7.2 43.0(+1.9) 53.1 80.0(+0.2) 6.8 53.2(+2.0) 7.3 40.0(+1.3)

SegNeXt-S 13.9 15.9 44.3 124.6 81.3 15.9 54.2 15.9 42.2
SegNeXt-S ✓ 14.1 16.5 45.6(+1.3) 127.2 81.7(+0.4) 16.1 55.9(+1.7) 16.6 43.5(+1.3)

SegNeXt-B 27.6 34.9 48.5 275.7 82.6 34.9 57.0 34.9 45.8
SegNeXt-B ✓ 28.2 34.8 49.4(+0.9) 269.6 82.8(+0.2) 34.1 58.0(+1.0) 35.0 45.8(+0.0)

Table 4 Performance comparison of SegFormer [46] and Seg-
Former w/ offset learning on ADE20K and COCO-Stuff datasets.
FLOPs (G) is computed at input resolutions of 512×512 for all
datasets.

Method Offset Params
ADE20K COCO-Stuff

FLOPs mIoU FLOPs mIoU

SegFormer-B0 3.8M 8.4 37.4 8.6 35.6
SegFormer-B0 ✓ 3.9M 8.8 40.1(+2.7) 8.9 38.3(+2.7)

SegFormer-B1 13.7M 15.9 41.0 16.1 40.2
SegFormer-B1 ✓ 13.9M 16.3 43.7(+2.7) 16.4 41.9(+1.7)

SegFormer-B2 24.8M 25.9 45.6 26.0 44.6
SegFormer-B2 ✓ 24.9M 26.1 47.3(+1.7) 26.2 45.2(+0.6)

SegFormer-B3 44.6M 42.5 47.8 42.6 45.5
SegFormer-B3 ✓ 44.8M 42.8 49.5(+1.7) 42.9 46.3(+0.8)

SegFormer-B4 61.4M 59.2 48.5 59.3 46.5
SegFormer-B4 ✓ 61.6M 59.5 50.1(+1.6) 59.6 47.0(+0.5)

SegFormer-B5 82.0M 75.2 49.1 75.3 46.7
SegFormer-B5 ✓ 82.2M 75.5 50.6(+1.5) 75.5 47.2(+0.5)

of our method, we conduct experiments on four datasets. As
shown in Table 3, integrating our paradigm into SegNeXt
yields consistent performance improvements with negligi-
ble parameter overhead. In summary, our method achieves
average improvements of 1.4, 1.2, and 0.5 mIoU across
all datasets for the Tiny, Small, and Base scales, respec-
tively, while introducing only 0.1-0.2M additional param-
eters. These results demonstrate the effectiveness and ef-
ficiency of our approach in enhancing segmentation per-
formance. We also evaluate SegNeXt-T with offset learn-
ing paradigm using the ensemble strategy (multi-scale).
The model achieves mIoU of 43.2 on ADE20K, 81.9 on
Cityscapes, 54.5 on Pascal Context, and 40.5 on COCO-
Stuff, further enhancing segmentation accuracy.
To further show the advantages of our method, we show
the segmentation results based on the SegNeXt-T model in
Fig. 5. The visualizations reveal that our model achieves
more precise segmentation outcomes, particularly in the
identification of background regions and small objects. This
qualitatively validates that our method can better align image

Image GT SegNeXt-T SegNeXt-T /w Ours

Figure 5 Visualization of the offset learning paradigm on SegNeXt.
Compared to the baseline SegNeXt-T, applying offset learning
paradigm enables the model to segment objects more accurately,
especially small objects (e.g., , the clock in the third image).

features with class representations.
Furthermore, the diminishing improvement trend (from
1.4 to 0.5 mIoU) as the model size increases suggests
that larger-scale models inherently possess superior feature-
representation alignment capabilities. This experimental
observation directly validates our hypothesis of a positive
correlation between model size and class alignment capabil-
ity. The results also demonstrate that our approach resolves
the identified issues with the efficiency level anticipated in
our analysis.
SegFormer with offset learning. To systematically evalu-
ate the adaptability of our offset learning paradigm across
varying model capacities, we perform comprehensive exper-
iments on six SegFormer architectures (B0-B5) and report
results on ADE20K and COCO-Stuff. To ensure a fair com-
parison, we employ the results provided by mmsegmenta-
tion [12], wherein the model’s FLOPs are smaller than those
reported in the paper. From B0 to B5, the average mIoU im-
provements on the two datasets are 2.7, 2.2, 1.2, 1.3, 1.1, and
1.0, respectively. This gradually diminishing performance
gain with increasing model scale aligns with the conclusions
drawn from experiments on the SegNeXt model, further val-
idating our hypothesis regarding the misalignment between
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Table 5 Performance comparison of Mask2Former [10] and
Mask2Former w/ Offset Learning on ADE20K dataset.

Method Offset Params (M) mIoU

Mask2Former-Tiny 47.4 47.7
Mask2Former-Tiny ✓ 47.6 50.3(+2.6)

efficient model features and class representations. It also
underscores the effectiveness of our offset learning paradigm
in addressing the issue of misalignment in the traditional
per-pixel classification paradigm.
Mask2Former with offset learning. We perform exper-
iments on Mask2Former-Tiny, as even the Tiny model al-
ready has 47.4M parameters. As shown in Tab. 5, the results
demonstrate that integrating our method into the mask clas-
sification paradigm improves the performance by 2.6 mIoU
with only a 0.2M parameter increase. As shown in the com-
parison in Tab. 1, the mask classification paradigm only
adjusts class representations, whereas our offset learning
paradigm simultaneously aligns both image features and
class representations. This demonstrates the effectiveness
of our method in achieving efficient and concurrent align-
ment of image features (per-pixel embeddings) and class
representations (mask embeddings).

4.4 Ablation Study
Ablation analysis on core components. To systematically
validate the efficacy of each component in our OffSeg frame-
work, we conduct ablation studies on the ADE20K dataset,
as detailed in Tab. 6 The baseline model (first row) employs
a simple convolutional pixel decoder without FreqFusion [5]
and achieves 40.7 mIoU. Introducing FreqFusion alone im-
proves the mIoU score by 1.3. Based on FreqFusion, combin-
ing class offset learning and feature offset learning improves
mIoU by 0.9 and 1.5, respectively. This demonstrates that
both branches can independently enhance the model per-
formance, with adaptable features yielding a larger impact
than adjustable class representations. The simultaneous in-
corporation of both branches achieves the best performance,
demonstrating their synergistic effect in jointly aligning im-
age features and class representations.
Ablation analysis on the effect of channel number. As
shown in Tab. 7, we adopt the baseline w/ FreqFusion only
as the base model to verify the effect of channel num-
ber on the per-pixel classification paradigm. When the
channel number scales up from 64 to 1024, the results
show that increasing feature dimensions in per-pixel clas-
sification models yields diminishing returns, and when it
reaches 2048, the performance experiences a certain de-
cline. This reveals that increasing the image feature channels
and class representation channels for the per-pixel classifi-
cation paradigm can improve the expressive ability of the
model, as higher-dimensional vectors can represent higher-

Table 6 Ablation experiments on different components of the
proposed OffSeg. FF., CO., and FO. represent FreqFusion, class
offset learning, and feature offset learning, respectively.

FF. CO. FO. Params (M) FLOPs (G) mIoU

5.9 5.1 40.7
✓ 6.1 6.0 42.0
✓ ✓ 6.2 5.3 42.9
✓ ✓ 6.2 5.3 43.5
✓ ✓ ✓ 6.2 5.3 44.2

Table 7 Ablation experiments on the effect of channel number of
image features and class representations on baseline. The models
all belong to the per-pixel classification paradigm, not our offset
learning paradigm.

Channel 64 128 256 512 768 1024 2048

Params (M) 6.0 6.0 6.1 6.2 6.3 6.4 6.8
FLOPs (G) 4.7 5.1 6.0 7.7 9.4 11.1 17.9
mIoU (%) 41.2 41.7 42.0 42.8 42.9 43.5 43.0

dimensional spaces.
However, the simple approach of enhancing model perfor-
mance by increasing the number of channels incurs signif-
icant computational overhead and has an upper limit. For
instance, at a channel of 1024, the model achieves 43.5
mIoU with 11.1G FLOPs, but further increasing the chan-
nel number does not enhance performance. In contrast, our
OffSeg-T with offset learning paradigm achieves a perfor-
mance with 44.2 mIoU while requiring less than half of the
computational resources. This comparative analysis further
substantiates the efficiency and effectiveness of our proposed
method in achieving good segmentation accuracy.

5 Conclusions

In this paper, we analyze the limitations of the per-pixel
classification paradigm, specifically the misalignment be-
tween image features and class representations. To address
this issue, we propose the offset learning paradigm, which
introduces separate feature offset learning and class offset
learning branches to explicitly learn the necessary offsets
for aligning image features with their corresponding class
representations. Building upon this paradigm, we design
a series of efficient segmentation networks, named OffSeg,
containing three different scales. As a general segmentation
paradigm, we also integrate our offset learning paradigm
into three representative segmentation methods, including
SegFormer, SegNeXt, and Mask2Former with negligible
parameters. Extensive experiments on four widely used
datasets demonstrate the effectiveness and efficiency of our
proposed offset learning paradigm.
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