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Abstract—Weakly supervised semantic instance segmentation with only image-level supervision, instead of relying on expensive pixel-
wise masks or bounding box annotations, is an important problem to alleviate the data-hungry nature of deep learning. In this paper,
we tackle this challenging problem by aggregating the image-level information of all training images into a large knowledge graph and
exploiting semantic relationships from this graph. Specifically, our effort starts with some generic segment-based object proposals (SOP)
without category priors. We propose a multiple instance learning (MIL) framework, which can be trained in an end-to-end manner using
training images with image-level labels. For each proposal, this MIL framework can simultaneously compute probability distributions and
category-aware semantic features, with which we can formulate a large undirected graph. The category of background is also included
in this graph to remove the massive noisy object proposals. An optimal multi-way cut of this graph can thus assign a reliable category
label to each proposal. The denoised SOP with assigned category labels can be viewed as pseudo instance segmentation of training
images, which are used to train fully supervised models. The proposed approach achieves state-of-the-art performance for both weakly
supervised instance segmentation and semantic segmentation. The code is available at https://github.com/yun-liu/LIID.

Index Terms—Weakly supervised learning, instance segmentation, semantic segmentation, multiple instance learning, multi-way cut.
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1 INTRODUCTION

I NSTANCE-AWARE semantic segmentation (instance segmenta-
tion for short) focuses on simultaneously detecting and seg-

menting all object instances in an image. It is one of the most
important tasks in computer vision due to its great academic
and industrial values. Recent rapid progress on instance segmen-
tation has been driven by powerful baseline systems, such as
Fast/Faster/Mask R-CNN [1]–[3] and Fully Convolutional Net-
works (FCNs) [4]. However, the performance of these deep models
heavily relies on a large amount of training data with expensive
pixel-wise labeling. Annotating such training data has been a
particular bottleneck on the way of applying instance segmentation
to real-world applications, where labeling each pixel for a large
number of images is particularly time-consuming. For example,
densely annotating a single image in the Cityscapes dataset needs
“more than 1.5h on average” [5].

To alleviate the demand for expensive pixel-wise annotations,
some studies relax the supervision with bounding boxes [6]–
[9], where the training data can be just the data used for object
detection. Although annotating bounding boxes is cheaper than
annotating pixels, weakly supervised object detection is actually a
well-studied research field [10]–[12] owing to the labor-intensive
bounding box labeling. Our work in this paper follows [13]–
[17] to further relax the supervision, i.e., using only image-
level supervision to perform weakly supervised instance seg-
mentation. Thanks to the low annotation cost of image-level
labels, approaches in this category will benefit many real-world
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applications.
In weakly supervised instance segmentation, one of the main

challenges is to assign the image keyword to each semantic
instance, e.g., object proposals [18]. Zhou et al. [13] attempted to
tackle this challenging problem by computing class peak responses
in the class activation maps (CAM) [19] obtained from image
classifiers [20], [21]. These peak responses can be used to query
category-agnostic object proposals for the prediction of instance
masks. Similar to [13], many other weakly supervised instance
segmentation methods [14]–[17] and weakly supervised semantic
segmentation methods [22]–[30] also heavily depend on CAM for
object recognition. However, CAM tends to focus on the small
discriminative region of a target object, and it is also difficult
for CAM to correctly localize objects from complex scenarios
that contain small objects, multiple objects, and the complex
background. Although various techniques [27], [31]–[33] have
been introduced to improve CAM, the natural limitations of CAM
still hinder the development of weakly supervised learning [16].

Motivated by the above observations, we propose a novel
method that can overcome these limitations. Unlike the previ-
ous CAM-based weakly supervised segmentation methods that
directly use CAM or the improved versions of CAM for object
recognition [13]–[17], [22]–[31], our method learns the semantic
information of each image in the training process by using CAM
as one of the supervision sources in a multiple instance learning
(MIL) framework. Therefore, CAM helps the training of our
system by providing approximate coarse information, but the
performance of our system does not completely rely on CAM
because we have other designs to ensure the training of the MIL
framework, as proven in the experiments. Moreover, we propose
to integrate the useful information of all training images into a
large knowledge graph and explore the information in this graph
to bridge the image-level keywords and corresponding semantic
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instances. In this way, our method takes into consideration not
only the intrinsic properties of each image but also the overall
data distribution of the training database, so that it breaks the
limitations of CAM on weakly supervised segmentation.

Specifically, our effort starts with some generic segment-
based object proposals (SOP) such as selective search [34], LPO
[35], and MCG [18]. Since these methods are category-agnostic,
they do not rely on any semantic labels. Therefore, our system
can generalize to any category with only image-level informa-
tion. Given an image with corresponding image tags and object
proposals, we aim at assigning correct category labels to each
proposal and filtering out noisy proposals. To achieve this goal,
we build an MIL framework for image classification using image
tags as supervision. In this framework, if a proposal contains an
object of a specific category, our model will learn to make this
proposal contribute more to the final classification probability
of the corresponding category. If a proposal does not contain
any objects from the target categories, our model is expected to
ignore it. At last, this MIL framework can simultaneously assign
a probability distribution across all target categories and compute
a semantic feature vector for each proposal.

By viewing all proposals in the training database as non-
terminal nodes and all target categories (including background)
as terminal nodes, we can construct an undirected graph using the
produced probability distributions and semantic feature vectors.
This large graph can well represent the properties of each proposal
and the relationships among all proposals in the training database.
The optimal multi-way cut of this undirected graph can associate
each proposal with a proper category label. After removing noisy
proposals, the remaining proposals with automatically assigned
labels can serve as pseudo instance segmentation to be used for
training fully supervised models. Since our method Leverages
Instance-, Image- and Dataset-level information, we call it LIID.

We perform extensive experiments on PASCAL VOC2012
[36] and MS-COCO [37] datasets to evaluate the proposed
method with various experimental settings. The evaluation results
demonstrate that the proposed approach achieves state-of-the-
art performance for both weakly supervised instance segmentation
and semantic segmentation. To sum up, the main contribution of
this paper is threefold:
• We propose a novel multiple instance learning (MIL) frame-

work to simultaneously compute the probability distribution
and extract the semantic feature vector for each proposal.

• We construct a large undirected graph using the produced
probability distributions and semantic features, in which
the target categories (including background) are viewed as
terminal nodes. We further propose an efficient approximate
optimization algorithm to perform a multi-way cut on this
graph to obtain pseudo instance segmentation.

• Extensive experiments demonstrate that the proposed LIID
consistently achieves state-of-the-art performance for both
weakly supervised instance segmentation and semantic seg-
mentation.

2 RELATED WORK

Instance segmentation. Instance segmentation is an active
research area for scene understanding. Longstanding efforts have
focused on fully supervised settings. Most of the top-performing
methods are based on object detection networks to output a ranked

list of segments rather than bounding boxes [3], [38]–[41]. Among
these methods, Mask R-CNN [3] and its derivatives [40], [41] have
dominated the state-of-the-art. Some researchers also contributed
approaches based on initial semantic segmentation networks to
generate instance masks [42]–[44]. Although fully supervised
methods can achieve high accuracy, they usually require large-
scale training data with expensive pixel-wise annotations, which
makes them inconvenient to be applied to real-world applications.

Weakly supervised instance segmentation. For weakly super-
vised instance segmentation, Khoreva et al. [6] firstly proposed
to use labeled bounding boxes as the supervision rather than
pixel-wise masks. Specifically, they used a modified version of
GrabCut [45] to estimate an object segment from its bounding
box. The obtained object segments are further refined by the SOP
generated by MCG [18]. Li et al. [7] extended [6] by iteratively
refining the proxy ground truth. They used the outputs of the
network on the training set as the new proxy ground truth. Hsu
et al. [8] formulated this problem as an MIL task by generating
positive and negative bags based on the sweeping lines of each
bounding box. This MIL formulation can be integrated into an
end-to-end network to learn an instance segmentation model. Hu et
al. [9] introduced a semi-supervised instance segmentation model
using transfer learning, in which some classes have pixel-wise
annotations while the other classes only have bounding boxes.

Zhou et al. [13] initiated the challenging problem of training
neural networks with image-level weak supervision for instance
segmentation. They introduced a quite novel concept of class
peak responses that reflect strong visual cues residing inside each
semantic instance. The learned class peak response maps can be
utilized to query and rank the SOP. Their method significantly
outperforms various baselines. Following [13], Zhu et al. [14]
presented an instance extent filling approach to collect pseudo
supervision from noisy SOP selectively. The pseudo supervision
is used to learn a differentiable filling module that predicts a class-
agnostic activation map for each instance. Cholakkal et al. [15]
introduced an image-level supervised approach for both ordinary
object counting and image-level supervised instance segmentation
by constructing an object category density map. Ahn et al. [16]
propagated the CAM of an image classification model to discover
the entire instance areas that are regarded as proxy ground truth
to train a fully supervised model. Ge et al. [17] proposed Label-
PEnet to progressively transform image-level labels to pixel-wise
labels by alternatively training four sequentially cascaded modules
including multi-label classification, object detection, instance re-
finement, and instance segmentation. We follow [13]–[17] to only
use image-level supervision for instance segmentation. Instead of
using CAM-based models, we attempt to use both the intrinsic
properties of each proposal and the overall data distribution of the
whole training database to determine the semantic category for
each proposal.

Weakly supervised semantic segmentation. Semantic seg-
mentation is highly related to instance segmentation, in that
semantic segmentation only recognizes the category of each pixel
without differentiating different object instances. Weakly super-
vised instance segmentation can be applied to semantic segmenta-
tion by simply eliminating the discrimination of object instances.
We also provide evaluation results for semantic segmentation in
this paper, so we broadly review the related work of weakly
supervised semantic segmentation here.
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Fig. 1. Our proposed network architecture for MIL-based multi-label image classification. This network is designed to simultaneously compute
probability distributions and extract semantic features for each input proposal.

Recent methods have achieved good performance using an-
notations that provide location information such as points [46],
scribbles [47], or bounding boxes [48]. Weakly supervised se-
mantic segmentation with image-level annotations still remains a
challenging problem. Given image-level annotations, CAM [19] is
a good starting point to discover coarse object locations. However,
CAM [19] tends to focus on the small discriminative region
of a target object, which makes it improper to train semantic
segmentation networks. Most of the current approaches aim at
improving CAM to extract complete objects using only image
tags. These methods either adopt image hiding and erasure to
prevent a classifier from focusing exclusively on the discriminative
parts of objects [23], [31], [49], or expand the CAM using feature-
level processing [27], [29], [50]–[53] and region growing [30],
[32], [54], [55] techniques. These methods often use various
auxiliary cues such as saliency maps [56]–[60], edges [61]–[63],
and object proposals [18], [64] to improve accuracy [22], [23],
[29], [30], [55], [65]–[68].

Besides the above approaches, Saleh et al. [69] and Pinheiro
et al. [70] proposed MIL methods for weakly supervised semantic
segmentation, but their methods are limited to pixel-wise classi-
fication and cannot learn instance-aware information. In contrast,
the introduced MIL framework in this paper focuses on learning
instance-aware information that is used to discriminate object
instances. More recently, there is a graph-based weakly supervised
semantic segmentation model proposed by Fan et al. [28] that is
relevant to our model. Although we focus on a different task from
[28], we analyze the differences between our method and [28],
which can be summarized as follows:
1) Our method is different from [28] in proposal information

extraction. For each object proposal, Fan et al. [28] directly
used CAM [19] to estimate the probability distribution and
then adopted a pre-trained ImageNet [71] model to extract
semantic features. In contrast, we propose an end-to-end MIL
framework to simultaneously learn the probability distribution
and semantic features from a given image.

2) Our method is different from [28] in graph modeling. Fan
et al. [28] formulated the category label assignment as an
ordinary graph partitioning problem by viewing all proposals
as graph nodes, and the initial probabilities were only used as
a balanced term in the optimization formula. In contrast, we
build an undirected graph by viewing all proposals as ordinary
graph nodes and target category tags as terminals. The proba-
bility distributions and semantic features of proposals are used
to calculate weights for different types of edges. We formulate

the category assignment as a multi-way cut problem and then
propose an efficient approximate optimization algorithm to
solve this problem.

Although both our method and [28] use a graph to leverage the
dataset-level information, our proposed method is more reasonable
and intuitive in model training, probability prediction, feature
extraction, graph construction, and graph partitioning, which leads
to the significantly better performance of our method as demon-
strated in the experiments.

3 PROBLEM FORMULATION

Suppose we have a training image set I = {I1, I2, · · · , IN} with
corresponding image-level tags Y = {Y1, Y2, · · · , YN}, whereN
is the number of training images. Let K = {0, 1, 2, · · · ,K} be
the set of categories, in which 0 represents background and K is
the number of target semantic categories. Under a mild assumption
that every image has background regions, we have 0 ∈ Yi and
Yi ⊆ K (i = 1, 2, · · · , N). For convenience, we define K′ =
{1, 2, · · · ,K} that excludes the background category1. We can
input images I into any bottom-up proposal generation methods
[18], [34], [35], [72]–[75] (i.e., MCG [18] here) to obtain generic
SOP S = {S1, S2, · · · , SN}. Suppose Si = {s1i , s2i , · · · , s

|Si|
i }

(i = 1, 2, · · · , N), and sji (j = 1, 2, · · · , |Si|) is a binary
segment mask. Note that | · | represents the number of elements in
a set. We can easily obtain the corresponding bounding boxes of
these SOP, which can be denoted as B = {B1, B2, · · · , BN} and
Bi = {b1i , b2i , · · · , b

|Si|
i }.

Each of these category-agnostic SOP may contain no semantic
objects, multiple or one semantic object. The proposals containing
no complete semantic objects and multiple objects are deemed
as noisy proposals in this paper. In order to perform instance
segmentation, our primary objective in this paper is to remove
noisy proposals and assign a correct category label to the proposals
tightly containing one complete object. Therefore, our objective
can be formulated as

F (sji ) =

{
0 if sji is a noisy proposal

k′ if sji belongs to category k′
, (1)

where k′ ∈ K′ and sji denotes the jth proposal in the ith image.
The SOP sji with F (sji ) > 0 will serve as our pseudo instance
segmentation. An overview of the proposed solution to compute
F (sji ) is illustrated in Fig. 2.

1. For clarity, we use k ∈ K and k′ ∈ K′ to represent a category including
background and excluding background, respectively.
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Fig. 2. An overview of the proposed method. The training images with image-level labels are used to train our MIL-based multi-label image
classification network, as in Section 4. All training images, together with corresponding proposals, are fed into the MIL network to calculate
the probability distributions and semantic features. A large knowledge graph is then constructed using all training images. The pseudo instance
segmentation can be obtained using an improved multi-way cut algorithm.

4 PROPOSAL-BASED MIL FRAMEWORK

Given images with image-level labels, previous studies [13]–[15]
usually train multi-label image classifiers that are used to compute
CAM for object localization. Then, they combine CAM and SOP
to produce pseudo segmentation. Due to the natural limitations of
CAM, as discussed above, the training data are not fully used. In
contrast, we consider to incorporate SOP into the training process,
and each SOP is expected to learn useful information. Given an
input image Ii with image tags Yi, we would know the corre-
sponding proposals Si/Bi contain categories Yi, but each proposal
individually corresponds to which category is unknown. This is
actually a case of multiple instance learning (MIL). Therefore,
we build an MIL framework that takes images and generic object
proposals as inputs and views image-level tags as the supervision.
Through the training, the model is expected to learn to produce a
class probability distribution and a semantic feature vector for each
proposal, which will be used for the subsequent multi-way cut. In
this section, we first introduce the proposed network architecture
and then present several loss functions for the proposal-based MIL
framework.

4.1 Network Architecture

In this part, we introduce the designed network for MIL-based
multi-label image classification. The proposed network architec-
ture is shown in Fig. 1. Here, the category-agnostic proposals are
generated by the MCG algorithm [18]. An input image Ii first
passes through the backbone network, i.e., ResNet50 [21] here.
We perform ROI pooling [1] on the produced feature maps using
the bounding boxes Bi of the SOP Si. A global average pooling
(GAP) layer follows this ROI pooling to convert the feature map
into a 2048-dimensional feature vector f ji (j = 1, 2, · · · , |Si|)
for each proposal. Then, we connect a fully connected layer with
(K + 1) outputs aji (|aji | = K + 1) representing the produced
scores for K target categories and the background. Finally, let
(pj

i )k be the probability of class k obtained after a softmax layer,
so we have

(pj
i )k =

exp((aji )k)∑K
m=0 exp((a

j
i )m)

, (2)

where k ∈ K. With such a designing pattern, we can calculate
a feature vector f ji and a probability distribution pj

i for each
proposal. Through exposing proper loss functions, the proposed
network is expected to learn category-aware information for each
proposal.

4.2 Proposal-Based MIL Loss

For the training of the MIL framework, we propose several loss
functions to simultaneously infer the probability distributions and
extract the semantic features for object proposals. Considering that
the proposal labels are unknown, we design a CAM-based loss
function to approximate a pseudo label for each proposal, and
we also design an MIL-based image classification loss function
to compute the aggregated probability for each image so that
we can adopt image labels for supervision. These loss functions
are imposed to supervise the probability distribution pj

i for the
convergence of the network. Besides, we design an MIL-based
center loss function to concentrate the semantic feature vectors
f ji with the same category, so that the proposals belonging to the
same category will have small feature distance with respect to f ji .

4.2.1 CAM-Based Loss

Instead of relying on CAM to localize objects like previous
approaches [13]–[15], we apply CAM as one of the supervi-
sion sources for training by approximating a pseudo label for
each proposal. Specifically, using standard ResNet50 [21] net-
work with K independent cross-entropy loss functions, we can
train a multi-label image classification model. Then, we can
use the well-known CAM algorithm [19] to compute the CAM
Ak′

i (k′ ∈ K′) for an image Ii. Ak′

i is normalized into the
range of [0, 1]. Let ỹji denote the approximate category label
for the jth proposal (j = 1, 2, · · · , |Si|). Suppose we have
(Rj

i )k′ = mean(Ak′

i [bji ]) +max(Ak′

i [bji ]) and (Rj
i )k′ ∈ [0, 2],

where Ak′

i [bji ] means the corresponding region of the proposal bji
in Ak′

i ∈ [0, 1]. We approximate ỹji using the computed CAM as

ỹji =

 0 if ∀k′, (Rj
i )k′ < η

arg max
k′

(Rj
i )k′ otherwise

, (3)
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where η is a threshold. Therefore, ỹji can be viewed as the pseudo
label of the jth proposal bji , and K\{ỹji } is the category set other
than ỹji . We define the CAM-based loss function as

L
(i)
Att =− 1

|Si|

|Si|∑
j=1

[
log(pj

i )ỹj
i

+
1

K

∑
k∈K\{ỹj

i }

log(1− (pj
i )k)

]
.

(4)

In this way, the pre-trained multi-label image classification model
can help the MIL training through CAM. For the calculation
of (Rj

i )k′ , we use the box-level pooling rather than mask-level
pooling in Ak′

i [bji ], because proposal boxes are more reliable than
proposal segmentation masks (i.e., SOP). As shown in related
research [18], [34], [35], [72], proposal box generation is much
easier than mask generation and thus achieves higher accuracy. It
is difficult for bottom-up methods to accurately segment general
objects, and the inaccurate masks would be harmful to the MIL
training. We will further demonstrate this design in Section 6.2
through ablation studies.

4.2.2 MIL-Based Image Classification Loss
Although the proposal labels are unknown, the aggregation of the
learned probability distributions pj

i for all proposals in an image
can reflect the classification ability of the network. In other words,
we cannot directly supervise the probability pj

i for each proposal,
but we can supervise the overall probability aggregation for each
image. Suppose the aggregation score for each class in the image
Ii is (Zi)k (k ∈ K), which can be inferred from (pj

i )k. Instead
of a simple maximum or average across (pj

i )k, we use Log-Sum-
Exp (LSE) function [76] to compute a smooth approximation to
the maximum value of (pj

i )k (j = 1, 2, · · · , |Si|), which can be
formulated as

(Zi)k =
1

r
log

[
1

|Si|

|Si|∑
j=1

exp(r (pj
i )k)

]
, (5)

where r is a parameter allowing LSE function to behave in a
range between the maximum and the average. We empirically set
r to 5 in this paper [70]. Compared with a simple maximum, LSE
function can not only approximate the maximum but also take into
consideration all elements of (pj

i )k. With approximated (Zi)k, we
define the MIL-based image classification loss function as

L
(i)
MIL = − 1

|Yi|
∑
k∈Yi

log((Zi)k)− 1

|Yi|
∑
k∈Yi

log(1−(Zi)k), (6)

where Yi is the complementary set of Yi. It is consistent with the
intuition that the present categories should appear in the proposals
and the proposals having high probabilities for absent categories
should be penalized.

As described in Section 3, we assume that every image has
background regions, i.e., 0 ∈ Yi (i = 1, 2, · · · , N). This
mild assumption is essential for Equ. (6). On the one hand,
the proposals generated by bottom-up algorithms usually contain
many noisy proposals that fall outside the target object categories,
covering other categories of objects or even non-object regions, so
we have to include the background class for each image to ensure
the network training. On the other hand, our objective requires
recognizing and filtering out these noisy proposals as formulated
in Equ. (1), so we have to incorporate the background class in

training to learn proper information for noisy proposals and thus
filter out them using the techniques in Section 5.

4.2.3 MIL-Based Center Loss
The next loss function is designed for the semantic feature
extraction. The training is expected to maximize the similarity
score of semantic features of proposals with the same category
and minimize the similarity score of proposals with different
categories. To this end, we introduce an MIL-based center loss
function to concentrate the semantic features with similar semantic
meanings:

ŷji = arg max
k

(pj
i )k,

L
(i)
Cent =

1

|Si|

|Si|∑
j=1

[
1−

f ji · cŷj
i

‖f ji ‖2‖cŷj
i
‖2

]
,

(7)

where ck is the learned center for the kth category of input
samples, and ‖·‖2 is the `2-norm for a vector. This loss measures
the cosine similarity between a feature vector f ji and the learned
category center ck. In every training iteration, ck is updated with
respect to the semantic feature vector f ji as

cnew
ŷj
i

= cold
ŷj
i

+ θ · (f ji − cold
ŷj
i

),

for j = 1, 2, · · · , |Si|,
(8)

where θ is the update rate. Therefore, the similarity distances
between proposal pairs can thus be computed through their learned
feature vectors f ji .

With above definitions, the overall loss function for the MIL-
based multi-label image classification problem can be formulated
by

L(i) = αL
(i)
Att + βL

(i)
MIL + γL

(i)
Cent. (9)

In practice, we empirically set α, β and γ to 0.5, 0.5 and 0.1,
respectively. Our proposed L(i)

Att can leverage the pre-trained multi-
label image classification model to help the MIL training, and
L
(i)
MIL is naturally suitable for MIL training here. Hence both the

coefficients of L(i)
Att and L(i)

MIL are set to 0.5. For loss L(i)
Cent, it is

designed to minimize intra-class variations, which is irrelevant to
image classification, so we set a small coefficient of 0.1 to avoid
its effect on the classification results.

5 LABEL ASSIGNMENT VIA MULTI-WAY CUT

Intuitively, the prediction in consideration of the data distribution
of all training samples would be better than the prediction in
consideration of only a single sample. This is because a single
sample may have a bias or random error, but the overall data
distribution is more reliable. Although the training process of
the MIL framework has utilized all training data, this is only an
indirect use of the overall data distribution. Here, we consider a
direct way. Specifically, we exploit a large knowledge graph that
comprises proposals in all training images for a global solution.

5.1 Review of the Multi-way Cut Problem
Before introducing our method for SOP label assignment, we
provide a brief review of the multi-way cut problem in this part.
Let us first describe the conventional graph cut. Suppose we have
a connected and undirected graph G = (V,E) where the node
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set is V and the edge set is E. The weight function of this graph
G can be formulated as w : E → R+, in which R+ denotes the
set of non-negative real numbers. The commutative property holds
for any pair of nodes u ∈ V , v ∈ V , i.e., w(u, v) = w(v, u). A
graph cut is defined by a partition of V into disjoint subsets V1
and V2, resulting in an edge subset E′ ⊆ E that have one vertex
in V1 and the other vertex in V2. Hence the edge subset E′ can
be used to represent this graph cut. The cost of this cut is defined
as
∑

(u,v)∈E′ w(u, v). The typical minimum cut problem is to
find the minimum-cost cut that separates two given nodes u̇ and
v̇ (we call these nodes terminals), i.e., u̇ ∈ V1 and v̇ ∈ V2. This
minimum cut problem is the dual of the maximum flow problem,
which can be solved in polynomial time.

The multi-way cut problem is one generalization of the mini-
mum cut, which is also known as the multi-terminal cut problem
[77]–[79]. Given a set of terminals Ê ⊆ E, the multi-way cut is
to find the minimum-cost subset of edges E′ ⊆ E whose removal
separates each pair of terminals. In other words, no connected
component of the graph (V,E − E′) contains two terminals
from Ê. When there are only two terminals, i.e., |Ê| = 2, this
problem is equivalent to the above minimum cut problem that
is solvable in polynomial time. When there are three or more
terminals, i.e., |Ê| ≥ 3, the multi-way cut becomes NP-hard and
requires approximation algorithms to solve it. In the following
subsections, we formulate the SOP label assignment as a multi-
way cut problem and propose a simple solution to solve this
complex problem.

5.2 Knowledge Graph Construction
In order to compute F (sji ) in Equ. (1), we construct a large
knowledge graph that incorporates not only the intrinsic properties
of each proposal but also the relationship between different pro-
posals in the whole training database. We use all training images to
construct this graph. Exploiting this knowledge graph will assign
a reliable category label for each proposal. We formulate the label
assignment process as a multi-way cut problem and introduce
an effective approximate solution to this problem. The graph cut
results for training images are our pseudo instance segmentation
that can be used to train fully supervised models.

As in Section 5.1, we construct a connected and undirected
graph G = (V,E). Specifically, we view all proposals sji (i =
1, 2, · · · , N ; j = 1, 2, · · · , |Si|) and target categories K (K =
{0, 1, 2, · · · ,K}) as graph nodes, so we have V = K∪S1∪S2∪
· · · ∪ SN . Moreover, let K be the set of terminals, i.e., Ê = K.
Each edge (u, v) ∈ E has a non-negative weight of

w(u, v) =


(pj

i )k if ∃i, j u = sji ; v ∈ K
0 if u ∈ K, v ∈ K

δ · |f
j
i · f

j′

i′ |
‖f ji ‖2‖f

j′

i′ ‖2
if ∃i, j u = sji ; ∃i

′, j′ v = sj
′

i′

,

(10)
where δ is a balance factor. Therefore, the edge weight between
terminal nodes is 0, which is the minimum edge weight in the
knowledge graph G. The edge weight between a proposal node
and a terminal node is just the predicted probability of that
proposal falling into the corresponding category. The edge weight
between two proposal nodes is the cosine similarity of their feature
vectors [28], [80], so proposal pairs having similar semantic
content will have large cosine similarities. In this manner, graph G
has the knowledge of the whole training database by incorporating

the probability distributions and semantic features of all training
images learned in Section 4.

5.3 Multi-way Cut on the Knowledge Graph
Given the knowledge graphG = (V,E) with a set of terminalsK,
our goal is to find the multi-way cut to disconnect each terminal
node from the rest terminals. That is to say, our primary objective
here is to find an edge subset E′ ⊆ E with the minimum cost
such that in the new graph (V,E − E′), there is no connected
path between any pair of terminals. After the multi-way cut,
the corresponding nodes of proposals that have similar semantic
information will fall into the same component, because the above
multi-way cut has maximized the similarity within each compo-
nent and minimized the similarity across different components by
minimizing the cut cost. There is only one terminal k ∈ K in each
component, and the pseudo category label of a proposal is just
the terminal k in its corresponding component. Here, the category
k = 0 implies the background or noisy proposals, because it falls
outside the target object categories.

The commonly used datasets such as PASCAL VOC2012 [36]
and MS-COCO [37] usually have |K| ≥ 3, which means there
are three or more object categories. As discussed in Section 5.1,
we require an approximation algorithm to solve the above multi-
way cut problem. Let ∆K denote the K-simplex, so the K-
dimensional convex polytope in RK+1 can be expressed as
{x ∈ RK+1|(x ≥ 0) ∧

∑
k xk = 1}. For k, k̇ ∈ K, ek ∈ RK+1

denotes the unit vector with (ek)k = 1 and (ek)k̇ = 0 (∀k 6= k̇).
According to [79], we can formulate the following optimization
function to solve the multi-way cut problem

min
x

1

2

∑
(u,v)∈E

w(u, v) · ‖xu − xv‖1 s.t.

xu ∈ ∆K , ∀u ∈ V ;

xk = ek, ∀k ∈ K,

(11)

where ‖·‖1 means the `1-norm. However, directly solving the
linear programming in Equ. (11) is unpractical because of the
exponential number of constraints [79], especially in our case
where the knowledge graph on the whole training database is
very large. The CPU memory and runtime required by the direct
solution is unpractical to current devices. Specifically, the space
complexity of the direct solution is O(|E||V |2), and the required
CPU memory for PASCAL VOC2012 [36] training set is about
103 ∼ 104 GB, which is much larger than the memory capacity
of existing computers.

To address this problem, we connect each node u ∈ (V −K)
to at most three other nodes v (v ∈ (V −K) and v 6= u) with three
largest edge weights instead of connecting each node u ∈ V to
all the other nodes. We observe that in the obtained sparse graph,
the overall large knowledge graph will be automatically divided
into many small disconnected components, each of which can be
viewed as a sub-graph Gt = (Vt, Et):

∪tVt = V,

∪tEt = E.
(12)

Each sub-graph is independent of each other in the multi-way cut
problem. This can be easily proved by decomposing Equ. (11) into
many terms, each of which represents the cut cost of a sub-graph.
The common graph nodes among these terms are only terminals,
which will not affect the final results because these terminals
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must fall into different components in the end. Therefore, we
can process each sub-graph individually to compute its multi-way
cut E′t. To solve this linear programming problem, we first use
the simplex method to solve Equ. (11), whose results are further
converted to the solution of the multi-way cut using a branch-and-
bound method of IBM-CPLEX [81]. The multi-way cut E′ of the
original large graph can be obtained by

∪tE′t = E′. (13)

In this way, we can successfully approximate the multi-way cut of
a large graph by computing many small graphs. Here, we chose
to connect each node with three edges because connecting each
node with four edges will lead to too large sub-graphs that are
difficult to be solved as discussed above. With the multi-way cut
results, we can easily assign F (sji ) in Equ. (1) to the category
k, if the proposal sji falls into the same subset with terminal
k (k ∈ K). If we have F (sji ) = 0, the SOP sji would be
a noisy proposal and thus be abandoned. For the rest of SOP
with F (sji ) 6= 0, we apply non-maximum suppression (NMS)
using the corresponding bounding boxes bji with an intersection-
over-union (IoU) threshold of 0.4, as commonly done in the field
of object detection [1]–[3]. This NMS operation solves the case
where multiple proposals represent a single object. At last, we
view the rest of SOP and the corresponding category labels F (sji )
as the proxy ground truth for training images, so that we can
train a Mask R-CNN model [3] (with the ResNet50 [21] backbone
network) for weakly supervised instance segmentation or train a
DeepLab model [82] (with the ResNet101 [21] backbone network)
for weakly supervised semantic segmentation.

6 EXPERIMENTS

6.1 Experimental Setup
Datasets. The proposed approach is evaluated on the PASCAL
VOC2012 dataset [36] and MS-COCO dataset [37]. Note that
only image-level tags are used for training. VOC2012 dataset
[36] consists of 20 semantic categories as well as a background
category. We follow [13]–[15] to utilize VOC2012 main trainval
subset, excluding segmentation val images, to train our MIL
network (with ∼10K images). We evaluate our approach and
baseline models using the 1449 segmentation val images. For
ablation studies, we adopt the VOC2012 main trainval subset,
excluding segmentation train+val images, for training and seg-
mentation train set for validation. MS-COCO dataset [37] consists
of 80 semantic categories. We follow [28] to train on the standard
trainval set and evaluate on the test-dev set.

Implementation details. In the training, we adopt the bottom-
up MCG [18] algorithm to generate 500 SOP per image, from
which we select 20/40 proposals for VOC2012/MS-COCO using
the simple filtering method in [83]. We implement our MIL-
based multi-label image classification model using the PyTorch
framework. We apply the SGD optimization algorithm with the
learning rate policy of step. For both VOC2012 and MS-COCO
datasets, the initial learning rate is 5×10−4, which will be divided
by 10 after 5 epochs. We run SGD for 10 epochs in total with the
mini-batch of one image. The weight decay and momentum are set
to 10−4 and 0.9, respectively. In the construction of the graph, we
follow [28] to compute salient instances [75] as object proposals.
The training of Mask R-CNN [3] and DeepLab [82] follows the
default settings.

TABLE 1
Evaluation results of different θ (in Equ. (8)) and γ (in Equ. (9)) values
on the VOC2012 segmentation train set [36]. Each result pair w1/w2

denotes the result without (w1) and with (w2) the knowledge graph,
respectively.

No. θ γ AP50 AP75 ABO
1 0.01 0.05 30.3/33.8 14.9/16.3 36.7/38.7
2 0.01 0.1 32.5/34.8 15.5/16.7 38.2/39.4
3 0.01 0.5 32.4/33.7 15.1/16.1 37.9/39.2
4 0.03 0.1 32.0/33.7 14.9/16.0 38.0/39.3
5 0.03 0.3 31.9/33.7 14.8/16.3 37.6/39.3
6 0.05 0.1 32.3/33.6 15.1/16.3 37.8/39.2
7 0.005 0.5 29.1/32.3 13.6/15.5 36.3/38.5
8 0.05 0.5 31.5/33.2 14.9/16.2 37.7/39.0
9 - 0 31.3/- 15.0/- 37.8/-

TABLE 2
Evaluation results of different α and β values (in Equ. (9)) on the

VOC2012 segmentation train set [36]. Each result pair w1/w2 denotes
the result without (w1) and with (w2) the knowledge graph, respectively.

No. α β AP50 AP75 ABO
1 1.0 0.0 28.7/31.8 13.9/15.7 35.5/37.9
2 0.8 0.2 31.5/34.0 14.7/16.6 37.4/39.2
3 0.5 0.5 32.5/34.8 15.5/16.7 38.2/39.4
4 0.2 0.8 31.3/32.8 14.8/16.1 36.2/37.6
5 0.0 1.0 18.7/19.3 8.8/9.2 22.9/23.0

TABLE 3
Evaluation of the existence of mean and max in (Rj

i )k′ (Equ. (3)) on
the VOC2012 segmentation train set [36]. Each result pair w1/w2

denotes the result without (w1) and with (w2) the knowledge graph,
respectively.

No. mean max AP50 AP75 ABO
1 4 7 28.7/32.6 13.1/15.5 34.3/37.7
2 7 4 32.4/33.6 15.1/16.1 37.7/38.7
3 4 4 32.5/34.8 15.5/16.7 38.2/39.4

TABLE 4
Evaluation for the calculation of (Rj

i )k′ in Equ. (3) when using box- or
mask-level pooling on the VOC2012 segmentation train set [36]. Each

result pair w1/w2 denotes the result without (w1) and with (w2) the
knowledge graph, respectively.

No. Proposal types AP50 AP75 ABO
1 Box 32.5/34.8 15.5/16.7 38.2/39.4
2 Mask 30.7/32.4 14.5/15.7 36.8/38.0

Evaluation metrics. For the evaluation metrics of instance
segmentation, we just follow [13] to employ the region-based
mean average precision (AP) at IoU threshold 0.5 (AP50) and 0.75
(AP75) (see in [37]), as well as the average best overlap (ABO)
metric (see in [34]) that provides a different perspective.

6.2 Ablation Study

Before the comparison with other competitors, we perform several
ablation studies to evaluate the effectiveness of different design
choices and parameter settings. All ablation studies are conducted
for weakly supervised instance segmentation on the VOC2012
segmentation train set [36] as described above. Here, we do not
train Mask R-CNN [3] to save time if not mentioned. When tuning
each group of hyper-parameters, other parameters are kept as
default.
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TABLE 5
Evaluation of different η values (in Equ. (3)) on the VOC2012

segmentation train set [36]. Each result pair w1/w2 denotes the result
without (w1) and with (w2) the knowledge graph, respectively.

No. η AP50 AP75 ABO
1 0.25 28.3/30.8 13.7/15.3 34.6/36.5
2 0.50 30.0/33.4 14.2/16.0 36.5/38.7
3 0.75 32.5/34.8 15.5/16.7 38.2/39.4
4 1.00 30.1/32.5 14.5/16.0 36.4/38.3

TABLE 6
Evaluation results of different δ values (in Equ. (10)) on the VOC2012

segmentation train set [36].

No. δ AP50 AP75 ABO
1 1 30.3 14.9 37.0
2 2 34.6 16.3 39.3
3 3 34.8 16.7 39.4
4 5 34.8 16.7 39.4
5 10 34.8 16.6 39.4

The parameter setting of center loss L(i)
Cent. The center loss is

designed to concentrate the feature vectors f ji . The hyperparameter
θ (in Equ. (8)) controls the update speed of the center feature vec-
tor of each category, and the parameter γ (in Equ. (9)) controls its
influence to the backbone net. Different settings and corresponding
results of θ and γ are displayed in Table 1. When we have γ = 0,
the parameter θ and the consequent knowledge graph are omitted
(No. 9 in Table 1). We can see that the results of this setting
are worse than the best setting without the knowledge graph,
demonstrating that the MIL-based center loss (Section 4.2.3) is
not only necessary for the construction of the knowledge graph
but also helpful for the training of the MIL framework. When
we have γ 6= 0, θ and γ seem not sensitive to different values.
The setting of θ = 0.01 and γ = 0.1 achieves slightly better
performance. Therefore, we use 0.01 and 0.1 as the default values
for θ and γ, respectively.

The balance factors of loss functions L(i)
Att and L

(i)
MIL. We

also evaluate the effectiveness of the balance factors α, β for loss
functions L(i)

Att and L
(i)
MIL in Equ. (9). The results are shown in

Table 2. We can see that both L(i)
Att and L(i)

MIL contribute a lot to
the final instance segmentation. When α = 0.5 and β = 0.5, the
proposed method performs best, so we use this setting as default.

The mean and max terms of (Rj
i )k′ . In Equ. (3), we

have defined an auxiliary term (Rj
i )k′ = mean(Ak′

i [bji ]) +
max(Ak′

i [bji ]) to compute the approximate category label ỹji
which will be used in Equ. (4) to compute L

(i)
Att . In Table 3,

we conduct MIL training using only mean term of (Rj
i )k′ , only

max term, and both mean and max terms. The third experiment
clearly outperforms the other two.

The box- or mask-level pooling for (Rj
i )k′ . In Section 4.2.1,

we intuitively analyze the reason why we use the box-level pooling
rather than mask-level pooling for the calculation of (Rj

i )k′

in Equ. (3). Here, we conduct experiments to demonstrate the
superiority of box-level pooling when compared with mask-level
pooling on the VOC2012 segmentation train/val sets [36]. The
results are displayed in Table 4 and Table 8 (No. 6). We can
observe that mask-level pooling leads to significant performance
degradation. Maybe this is because the inaccurate SOP impairs the

TABLE 7
Evaluation for the upper bound of LIID on the VOC2012 segmentation
train set [36]. The oracle version uses ground truth boxes to filter and

label SOP.

No. GT boxes (Oracle) AP50 AP75 ABO
1 7 34.8 16.7 39.4
2 4 44.9 23.0 39.1

TABLE 8
Evaluation for each component of LIID after Mask R-CNN training on

the VOC2012 segmentation val set [36]. The symbol 7 means to
remove a component in LIID. The first line (No. 1) is the default version

of LIID.

No. Strategy AP50 AP75 ABO
1 - 48.4 24.9 50.8
2 CAM-Based Loss L(i)

Att 7 38.3 17.1 45.4
3 MIL Loss L(i)

MIL 7 46.9 24.1 48.1
4 Center Loss L(i)

Cent 7 45.8 23.0 48.6
5 Knowledge Graph 7 46.1 22.8 48.1
6 (Rj

i )k′ (Box→ Mask) 45.2 22.9 48.9

training of the MIL framework.

The threshold η for (Rj
i )k′ . In Table 5, we apply different

thresholds η for (Rj
i )k′ in Equ. (3). Although we have η ∈ [0, 2],

we only test η ≤ 1.00 because η ≥ 0.75 leads to significant
performance degradation. The threshold of 0.75 performs best, so
we use it as the default setting.

The effectiveness of the knowledge graph. In Section 5, we
use the outputs of the MIL framework to construct a knowledge
graph whose multi-way cut can assign category labels to corre-
sponding proposals. Without the knowledge graph, we can also
use the probabilities learned by MIL to label proposals. In Table 1
- Table 5, we report results before and after the multi-way cut. The
knowledge graph can improve performance in all cases. Therefore,
we can conclude that the knowledge graph is essential to our
system.

The balance factor δ. In Equ. (10), we use a balance factor δ
to control the contribution of feature cosine similarity for graph
edges. In Table 6, we study the effect of different δ values. We
achieve similar results when δ ≥ 2. According to the results, we
set δ to 5 as default because δ = 5 has slightly better performance.

The discussion about CAM. If we set α = 1.0 and β = 0.0
for Equ. (9) and do not use the knowledge graph in Section 5,
the model will degenerate to a form that only relies on CAM for
training. In Table 2, we can see that the results are 28.7%, 13.9%,
and 35.5% in terms of AP50, AP75, and ABO, respectively. With
our other designs, the results are improved to 34.8%, 16.7%, and
39.4% in terms of AP50, AP75, and ABO, respectively. Note that
this simple CAM-based variant of our model also includes some
of our effective designs as proven in Table 3 - Table 5. Therefore,
our system is not straightforward.

The upper bound of LIID. We also evaluate the upper bound of
LIID using ground truth boxes to filter and label SOP. Specifically,
if the maximum IoU of a bounding box proposal with any ground
truth boxes is larger than 0.5, this proposal is kept, and its assigned
label is the same as the ground truth box with the maximum IoU;
otherwise, this proposal is abandoned. We show the experimental
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Fig. 3. Qualitative results of instance segmentation on the PASCAL VOC2012 segmentation val set [36].

TABLE 9
Comparison of our method and other weakly supervised instance

segmentation models on the VOC2012 segmentation val dataset [36].
The light-colored method [8] uses bounding boxes as supervision,

whereas other methods only use image-level labels as supervision.

Method AP50 AP75 ABO

CAM [19]
Rect. 2.5 0.1 18.9

Ellipse 3.9 0.1 20.8
MCG 7.8 2.5 23.0

SPN [84]
Rect. 5.2 0.3 23.0

Ellipse 6.1 0.3 24.0
MCG 12.7 4.4 27.1

MELM [10]
Rect. 14.6 1.9 26.4

Ellipse 19.3 2.4 27.0
MCG 22.9 8.4 32.9

PRM [13] 26.8 9.0 37.6
IAM-S5 [14] 28.8 11.9 41.9

Cholakkal et al. [15] 30.2 14.4 44.3
Ahn et al. [16] 46.7 17.4 -
Hsu et al. [8] 58.9 21.6 -

Label-PEnet [17] 30.2 12.9 41.4
LIID (Ours) 48.4 24.9 50.8

results in Table 7. There is a large performance gap between LIID
and the oracle version, leaving room for future improvement.

Each component after Mask R-CNN training. We continue
by evaluating the effect of each component after Mask R-CNN
training on the VOC2012 segmentation val set [36]. Specifically,
we omit each component of the loss function or the multi-way
graph cut and then adopt the produced pseudo ground truth to
train Mask R-CNN. The results are summarized in Table 8. We can
observe that every component of LIID contributes significantly to
the final performance, as removing any component would lead to
substantial performance degradation.

6.3 Instance Segmentation on VOC2012
Since weakly supervised instance segmentation with only image-
level supervision is a recently initiated problem by Zhou et

al. [13], the previous study on this topic is very limited [13]–
[17]. Hence we follow [13] to construct some baselines based
on the bounding boxes generated by several weakly supervised
object localization models [10], [19], [84]. To obtain the instance
segmentation, we apply three simple mask extraction strategies:
i) Rect, i.e., just using the bounding boxes as the segmentation
results; ii) Ellipse, i.e., simply filling the largest ellipse enclosed
in each bounding box; iii) MCG, i.e., retrieving an MCG SOP [18]
with the maximum IoU with each bounding box. We train a Mask
R-CNN model [3] using the pseudo instance segmentation of the
training set and compare the test results with [8], [13]–[17] and
these nine baseline models.

The numeric experimental results on the VOC2012 segmenta-
tion val set [36] are summarized in Table 9. Note that Hsu et al. [8]
used bounding boxes as supervision, so it is unfair to compare
other methods with it directly. Nevertheless, the proposed LIID
achieves a 3.3% improvement compared with [8] in terms of the
AP75 metric, which demonstrates the effectiveness of LIID for
accurately segmenting object instances. It is not surprising to see
that [8] outperforms LIID in terms of the AP50 metric, because the
bounding box priors used by [8] would greatly help to find object
instances and thus roughly segment them with a small overlap with
ground truths. For image-level supervised methods, the proposed
LIID achieves the best performance under various evaluation
metrics. Compared with the second-best method, i.e., [16], LIID
is 1.7% and 7.5% higher in terms of AP50 and AP75, respectively.
Note that AP75 is the most important measure metric for instance
segmentation, because it reflects the ability of detection to cover
the object tightly. The significant improvement in terms of AP75

indicates that LIID is good at correctly segmenting objects that
have a high overlap with ground truth. The recent weakly super-
vised object detection model MELM [10] with SOP generated by
MCG can perform pretty well but worse than PRM [13] and LIID.
This demonstrates weakly supervised object detection is highly
related to, but can not be directly applied to weakly supervised
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TABLE 10
Instance segmentation mask AP on COCO test-dev [37]. The details of

metrics can be found in [37]. The light-colored methods are fully
supervised, while [28], [85] and our LIID are weakly supervised.

Method AP AP50 AP75 APS APM APL

MNC [39] 24.6 44.3 24.8 4.7 25.9 43.6
FCIS [86] 29.2 49.5 - 7.1 31.3 50.0

Mask R-CNN [3] 35.7 58.0 37.8 15.5 38.1 52.4
Fan et al. [28] 13.7 25.5 13.5 0.7 15.7 26.1
WS-JDS [85] 6.1 11.7 5.5 1.5 7.1 12.2
LIID (Ours) 16.0 27.1 16.5 3.5 15.9 27.7

instance segmentation. We display some examples of our instance
segmentation results in Fig. 3. We can see that LIID can produce
pretty good instance segmentation. Even for images containing
multiple instances of the same category, each instance can be
segmented very well.

Runtime and memory consumption. For the runtime and
memory footprint, the multi-way cut needs about 5 minutes and 26
GB CPU memory for VOC2012 training images. The MIL frame-
work needs about 0.02 seconds to process an image. Hence the
average runtime for a training image is 5×60/10K+0.02 = 0.05
second. The runtime for a test image is the same as Mask R-CNN
[3] because we adopt our pseudo ground truth to train Mask R-
CNN for testing.

6.4 Instance Segmentation on MS-COCO
In this part, we compare with [28], [85] that have reported weakly
supervised instance segmentation results on the MS-COCO dataset
[37]. We use the same experimental settings to assign category
labels to SOP as on the VOC2012 dataset and train a Mask R-
CNN [3] model. Besides [28], [85], we also report the results of
three fully supervised methods, including MNC [39], FCIS [86],
and Mask R-CNN [3]. The evaluation results are summarized in
Table 10. The proposed LIID performs significantly better than
[28], [85], which demonstrates that the proposed LIID is robust
to different datasets. Compared with [28], LIID achieves 2.3%,
1.6%, and 3.0% better performance in terms of AP, AP50, and
AP75, respectively. This proves that the improvement of LIID over
[28] is nontrivial.

6.5 Weakly Supervised Semantic Segmentation
The above experiments evaluate our approach for instance seg-
mentation, while another challenging task highly related to us
is weakly supervised semantic segmentation with only image-
level supervision. Semantic segmentation can be viewed as a
pixel-wise classification problem, in which each pixel is assigned
with a category label. Unlike instance segmentation, semantic
segmentation need not recognize objects with the same category.
For training images, we merge our instance segmentation masks
of the same semantic category in each image. Then, we view the
resulting semantic segmentation as proxy ground truth and adopt
the same settings as in previous methods [26], [28], [54], [90],
[92] to train a DeepLab [82] model.

In Table 11, we compare with recent state-of-the-art methods
[16], [17], [22]–[32], [46], [47], [54], [55], [65], [67], [70], [87]–
[93] on the PASCAL VOC2012 [36] segmentation val and test
sets in terms of mean intersection-over-union (mIoU). For a fair
comparison, we report the results of these methods with the

TABLE 11
Comparison for weakly supervised semantic segmentation on the

PASCAL VOC2012 [36] segmentation val and test sets. Besides the
10K VOC2012 training images, some methods also use extra data for
training. 24K ImageNet means the simple ImageNet images in [68].

4.6K Videos are from the Web-Crawl dataset [25], including 960K video
frames. Besides the image-level supervision, semi-supervised
methods, [31], [46], [47], also use pixel-level labels, points, and

scribbles as the supervision, respectively. For a fair comparison, we
report the results of various competitors with the ResNet101 [21]

backbone network if provided by the original paper. “†” indicates results
with the Res2Net101 [33] backbone.

Method Year Extra Data mIoU (%)
val test

CCNN [87] ICCV’15 7 35.3 -
EM-Adapt [88] ICCV’15 7 38.2 39.6
MIL [70] CVPR’15 7 42.0 -
SEC [55] ECCV’16 7 50.7 51.7
AugFeed [65] ECCV’16 7 54.3 55.5
Bearman et al. [46] ECCV’16 Points 49.1 -
ScribbleSup [47] CVPR’16 Scribbles 63.1 -
STC [22] PAMI’17 40K Web 49.8 51.2
Roy et al. [24] CVPR’17 7 52.8 53.7
Oh et al. [89] CVPR’17 7 55.7 56.7
AE-PSL [23] CVPR’17 7 55.0 55.7
WebS-i2 [67] CVPR’17 19K Web 53.4 55.3
Hong et al. [25] CVPR’17 4.6K Videos 58.1 58.7
DCSP [26] BMVC’17 7 60.8 61.9
DSRG [54] CVPR’18 7 61.4 63.2
MCOF [90] CVPR’18 7 60.3 61.2
AffinityNet [32] CVPR’18 7 61.7 63.7
Wei et al. [27] CVPR’18 7 60.4 60.8
GAIN [31] CVPR’18 1464 Pixel 60.5 62.1
Shen et al. [91] CVPR’18 80K Web 63.0 63.9
Fan et al. [28] ECCV’18 7 63.6 64.5
Fan et al. [28] ECCV’18 24K ImageNet 64.5 65.6
Ahn et al. [16] CVPR’19 7 63.5 64.8
FickleNet [92] CVPR’19 7 64.9 65.3
Label-PEnet [17] ICCV’19 7 - 57.2
Lee et al. [30] ICCV’19 4.6K Videos 66.5 67.4
SSDD [93] ICCV’19 7 64.9 65.5
OAA [29] ICCV’19 7 65.2 66.4
LIID (Ours) - 7 66.5 67.5
LIID (Ours) - 24K ImageNet 67.8 68.3
LIID† (Ours) - 7 69.4 70.4

ResNet101 [21] backbone network if provided by the original
paper (recent methods usually report ResNet101 results). Besides
the 10K VOC2012 training images, some methods [22], [25],
[30], [31], [67], [91] also use extra training data, such as web-
crawled images [22], [67], [91], web-crawled videos [25], [30],
and pixel-level labels [31], to improve performance, which has
been visualized in Table 11. We provide two versions of LIID: one
is without extra training data, and the other is pre-trained on the
simple ImageNet dataset [68]. The simple ImageNet dataset [68]
selects 24K images that have the same categories as PASCAL
VOC from ImageNet dataset [71]. LIID outperforms all recent
competitors with or without extra data. Compared with [28]
that is designed for both instance segmentation and semantic
segmentation, LIID has 3.3% and 2.7% higher mIoU on the val
set and test set, respectively, when both methods use the 24K
simple ImageNet images [68] as extra training data. This again
demonstrates the improvement of LIID over [28] is neither trivial
nor straightforward. The recent state-of-the-art method [30] uses
4.6K videos [25] that contain 960K video frames as extra training
data, which is 40× more than LIID. However, LIID still performs
better than it, demonstrating the superiority of LIID. We display
some examples of our semantic segmentation results in Fig. 4.
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Fig. 4. Qualitative results of semantic segmentation on the PASCAL VOC2012 segmentation val set [36]. From Top to Bottom: Original images,
ground truth, and the predicted results by LIID, repeated by the bottom three rows.

Combined with the experiments in Section 6.3 and Section 6.4,
we can come to the conclusion that LIID achieves the state-of-the-
art performance for both weakly supervised instance segmentation
and semantic segmentation.

7 CONCLUSION

In this paper, we tackle the problem of weakly supervised instance
segmentation with only image-level supervision. Our effort starts
with some generic SOP. With these proposals, we first propose an
MIL framework which can simultaneously predict probability dis-
tributions and extract semantic feature vectors. Then, we construct
a large knowledge graph for all training images with the obtained
information. At last, an improved multi-way cut algorithm is
proposed to classify each proposal into a category. The proposals
falling into the background category will be viewed as noisy
data and be removed. Therefore, the proposed approach leverages
instance-, image- and dataset-level information to retrieve object
proposals and assign correct labels to them. Compared with

previous competitors, the proposed approach can achieve better
performance for both weakly supervised instance segmentation
and semantic segmentation. Moreover, we use the same hyper-
parameters for PASCAL VOC2012 and COCO datasets, which
indicates that the hyperparameters of our approach are robust to
different datasets. In the future, we would try to apply the proposed
proposal-based MIL framework and multi-way cut formulation to
other weakly supervised vision tasks.
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